Дифференциальное и интегральное исчисления функций нескольких переменных

Учебное пособие
2-е издание, дополненное

Ульяновск
УлГТУ
2015
Вельмисов, П. А.
ISBN 978-5-9795-1462-8

Пособие предназначено для бакалавров и специалистов всех направлений и специальностей, изучающих разделы «Дифференциальное исчисление функций нескольких переменных», «Кратные интегралы». Пособие содержит краткий теоретический материал, теоретические вопросы, индивидуальные задания, примеры решения задач и предназначено для обеспечения самостоятельной работы студентов по освоению разделов.
Работа выполнена на кафедре «Высшая математика» УлГТУ.
Печатается в авторской редакции.

© Вельмисов П. А., Маценко П. К., Покладова Ю. В., Савинов Н. В., 2013
© Вельмисов П. А., Маценко П. К., Покладова Ю. В., Савинов Н. В., 2015
ISBN 978-5-9795-1462-8
© Оформление. УлГТУ, 2015
Содержание

Введение ... 5

Раздел 1. Дифференциальное исчисление функций нескольких переменных ... 6

1.1. Функции нескольких переменных. Область определения 6
Пример решения задачи 1 ... 6

1.2. Частные производные ... 6
Пример решения задачи 2 ... 8

1.3. Производные сложной функции .. 8
Примеры решения задачи 3 ... 9

1.4. Производные неявной функции ... 10
Примеры решения задачи 4 ... 12

1.5. Дифференциал .. 13
Примеры решения задачи 5 ... 14

1.6. Применение дифференциала в приближенных вычислениях значений функций ... 15
Пример решения задачи 6 ... 16

1.7. Формулы Тейлора и Маклорена ... 16
Пример решения задачи 7 ... 16

1.8. Касательная плоскость и нормаль к поверхности 17
Примеры решения задачи 8 ... 17

1.9. Градиент и производная по направлению ... 18
Пример решения задачи 9 ... 19

1.10. Экстремум функции нескольких переменных 20
Пример решения задачи 10 .. 22
Пример решения задачи 11 .. 22

1.11. Условный экстремум функции нескольких переменных 23
Примеры решения задачи 12 ... 25

1.12. Наименьшее и наибольшее значения функции двух переменных в области .. 27
Примеры решения задачи 13 ... 27

1.13 Метод наименьших квадратов ... 29
Пример решения задачи 14 .. 32
Примеры решения задачи 15 ... 32
Пример решения задачи 16 .. 35

Теоретические вопросы ... 37

Расчетные задания ... 38
Раздел 2. Интегральное исчисление функций нескольких переменных ... 58
2.1. Двойной интеграл. Основные определения и свойства .. 58
Пример решения задачи 1 ... 62
Примеры решения задач 2, 3 .. 63
2.2. Вычисление двойного интеграла ... 59
Примеры решения задачи 4 ... 65
Примеры решения задачи 5 ... 66
2.3. Тройной интеграл и его вычисление .. 64
Примеры решения задачи 6 ... 70
Примеры решения задачи 7 ... 71
Примеры решения задачи 8 ... 72
Пример решения задачи 9 ... 73
2.4. Замена переменных в кратных интегралах .. 68
2.5. Приложения двойного интеграла ... 70
Пример решения задачи 10-15 .. 74
Примеры решения задачи 16 ... 81
2.6. Приложения тройного интеграла ... 74
Заключение ... 82
Список литературы .. 83
Введение

Активная самостоятельная работа студентов является важным фактором усвоения математики и овладения ее методами. Система типовых расчетов активизирует самостоятельную работу студентов и способствует более глубокому изучению курса высшей математики.

Настоящее пособие предназначено для бакалавров и специалистов всех направлений и специальностей, изучающих разделы «Дифференциальное исчисление функций нескольких переменных», «Интегральное исчисление функций нескольких переменных». Оно направлено на выработку у студентов навыков решения типовых задач.

Пособие состоит из двух частей:
1. Дифференциальное исчисление функций нескольких переменных,
2. Интегральное исчисление функций нескольких переменных.

Первая часть содержит краткий теоретический материал, теоретические вопросы, индивидуальные задания, примеры решения задач и предназначено для обеспечения самостоятельной работы студентов по освоению раздела. Теоретические вопросы являются общими для всех студентов; задачи, входящие в данное пособие, представлены каждая 31 вариантом. По каждой теме кратко изложены основные теоретические сведения, приведены решения типовых примеров. Это позволяет использовать данное учебное пособие для организации самостоятельной работы студентов по разделу «Дифференциальное исчисление функций нескольких переменных».

Вторая часть пособия содержит краткий теоретический материал по теме «Интегральное исчисление функций нескольких переменных» и указания для выполнения типового расчета «Кратные интегралы», предлагаемого «Сборником заданий по высшей математике» [10].

Учебное пособие подготовлено в рамках государственного задания №2014/232 Минобрнауки России и при поддержке гранта РФФИ №15-01-08599.
Раздел 1. Дифференциальное исчисление функций нескольких переменных

1.1. Функции нескольких переменных. Область определения функции нескольких переменных

Пусть \(D \) – некоторое множество упорядоченных пар вещественных чисел \((x, y)\).

Определение. Функцией двух переменных \(z = f(x, y) \) называется закон, согласно которому каждой паре \((x, y)\) из множества \(D \) ставится в соответствие единственное вещественное число \(z \). При этом множество \(D \) называется областью определения функции.

Теперь рассмотрим множество \(D \), состоящее из упорядоченных систем \(n \) вещественных чисел \(x = (x_1, x_2, \ldots, x_n) \). Такие системы называются точками \(n \)-мерного пространства.

Определение. Функцией \(n \) переменных \(u = f(x_1, x_2, \ldots, x_n) \) называется закон, согласно которому каждой точке \(x = (x_1, x_2, \ldots, x_n) \) из множества \(D \) ставится в соответствие единственное вещественное число \(u \).

Пример решения задачи 1.
Найти и изобразить область определения функции

\[z = \frac{\ln(4 - y - x^2)}{x y}. \]

Решение: Логарифмическая функция определена только при положительном значении аргумента, поэтому \(4 - y - x^2 > 0 \), или \(y < 4 - x^2 \). Это неравенство выполняется только для точек, лежащих «под параболой» \(y = 4 - x^2 \). Кроме того, знаменатель дроби не должен быть равен нулю, поэтому \(xy \neq 0 \), или \(x \neq 0, y \neq 0 \).

Таким образом, мы получили область определения функции; она изображена на рис.1.1.

1.2. Частные производные

Определение. Частным приращением функции \(u = f(x_1, x_2, \ldots, x_n) \) по переменной \(x_k \) в точке \(M(x_1, x_2, \ldots, x_n) \) называется разность

\[\Delta x_k u = f(x_1, \ldots, x_{k-1}, x_k + \Delta x_k, x_{k+1}, \ldots, x_n) - f(x_1, \ldots, x_{k-1}, x_k, x_{k+1}, \ldots, x_n). \]
Определение. Частной производной функции \(u = f(x_1, x_2, ..., x_n) \) по переменной \(x_k \) \((k = 1, ..., n)\) в точке \(M(x_1, x_2, ..., x_n) \) называется предел (если он существует)
\[
\lim_{\Delta x_k \to 0} \frac{\Delta u}{\Delta x_k} = \lim_{\Delta x_k \to 0} \frac{f(x_1, ..., x_{k-1}, x_k + \Delta x_k, x_{k+1}, ..., x_n) - f(x_1, ..., x_{k-1}, x_k, x_{k+1}, ..., x_n)}{\Delta x_k}.
\]

В математической литературе используются четыре обозначения частных производных функции \(u = f(x_1, x_2, ..., x_n) \):
\[
\frac{\partial u}{\partial x_k}, \quad \frac{\partial f}{\partial x_k}, \quad u'_k, \quad f'_k.
\]

Замечание 1. Для функции двух переменных \(z = f(x, y) \) определение частных производных выглядит так:
\[
\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} = z'_x = f'_x = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \text{ - частная производная по } x,
\]
\[
\frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} = z'_y = f'_y = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \text{ - частная производная по } y.
\]

Применяются также обозначения, в которых штрих сверху не ставится, например, \(f_x, f_y, f' \).

Замечание 2. Согласно определению частная производная по переменной \(x_k \) \((k = 1, ..., n)\) вычисляется по обычным правилам и формулам дифференцирования, справедливым для функции одной переменной (при этом все переменные, кроме \(x_k \), рассматриваются как постоянные). Например, при вычислении частной производной по переменной \(x \) от функции \(z = f(x, y) \) переменная \(y \) считается постоянной, и наоборот.

Определение. Частными и смешанными производными второго порядка функции \(u = f(x_1, x_2, ..., x_n) \) называются частные производные от ее частных производных первого порядка.

Согласно определению, производные второго порядка обозначаются и находятся следующим образом:
\[
\frac{\partial^2 u}{\partial x_k^2} = u''_{x_k} = \frac{\partial}{\partial x_k} \left(\frac{\partial u}{\partial x_k} \right) \text{ - производная второго порядка по переменной } x_k,
\]
\[
\frac{\partial^2 u}{\partial x_k \partial x_l} = u''_{x_k x_l} = \frac{\partial}{\partial x_l} \left(\frac{\partial u}{\partial x_k} \right) \text{ - смешанная производная второго порядка по переменным } x_k \text{ и } x_l.
\]

В частности, для функций двух переменных \(z = f(x, y) \) частные и смешанные производные определяются так:
\[
\frac{\partial^2 z}{\partial x^2} = z''_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right), \quad \frac{\partial^2 z}{\partial y^2} = z''_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right),
\]
\[
\frac{\partial^2 z}{\partial x \partial y} = z''_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right), \quad \frac{\partial^2 z}{\partial y \partial x} = z''_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right).
\]
Аналогично определяются и обозначаются частные производные порядка выше второго.

Заметание. При вычислении смешанной производной результат не зависит от порядка дифференцирования при условии, что возникающие при этом смешанные производные непрерывны.

Пример решения задачи 2.
Дана функция \(z = \sin \frac{y}{x} \). Показать, что \(x^2z''_{xx} + 2xyz''_{xy} + y^2z''_{yy} = 0 \).

Решение. Найдем частные производные

\[
z_x' = \cos \frac{y}{x} \left(-\frac{y}{x^2} \right); \quad z_y' = \cos \frac{y}{x} \frac{1}{x};
\]

\[
z_{xx}' = \left(-\frac{y}{x^2} \cos \frac{y}{x} \right)' = \frac{2y}{x^3} \cos \frac{y}{x} - \left(\frac{y}{x^2} \right)^2 \sin \frac{y}{x};
\]

\[
z_{yy}' = \left(\frac{1}{x} \cos \frac{y}{x} \right)' = -\frac{1}{x^2} \sin \frac{y}{x};
\]

\[
z_{xy}' = \left(-\frac{y}{x^2} \cos \frac{y}{x} \right)' = -\frac{1}{x^2} \cos \frac{y}{x} + \frac{y}{x^2} \sin \frac{y}{x}.
\]

Подставляя найденные частные производные в левую часть данного уравнения, получим

\[
\frac{2y}{x^3} \cos \frac{y}{x} - \left(\frac{y}{x} \right)^2 \sin \frac{y}{x} - 2\frac{y}{x} \cos \frac{y}{x} + 2\left(\frac{y}{x} \right)^2 \sin \frac{y}{x} - \left(\frac{y}{x} \right)^2 \sin \frac{y}{x} = 0,
\]

что и требовалось доказать.

1.3. Производные сложной функции

Предположим, что функция \(u = f(x_1, x_2, \ldots, x_n) \) имеет непрерывные частные производные \(\frac{\partial u}{\partial x_k} \) (\(k = 1, \ldots, n \)), а переменные \(x_1, x_2, \ldots, x_n \) сами являются функциями переменных \(t_1, t_2, \ldots, t_m \), причем существуют частные производные \(\frac{\partial x_k}{\partial t_j} \) (\(k = 1, \ldots, n; \quad j = 1, \ldots, m \)). Тогда существуют частные производные сложной функции \(u(t_1, t_2, \ldots, t_m) \), и они находятся по формуле

\[
\frac{\partial u}{\partial t_j} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \ldots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_j} \quad (j = 1, \ldots, m). \tag{1.1}
\]

1 Функция \(f(x_1, x_2, \ldots, x_n) \) считается непрерывной в точке \((x_1, x_2, \ldots, x_n) \), если

\[
f(x_1 + \Delta x_1, x_2 + \Delta x_2, \ldots, x_n + \Delta x_n) \to f(x_1, x_2, \ldots, x_n) \quad \text{при} \quad \Delta x_1, \Delta x_2, \ldots, \Delta x_n \to 0.
\]
В частности, если промежуточные переменные \(x_1, x_2, \ldots, x_n \) зависят от одного независимого аргумента \(t: x_1 = x_1(t), x_2 = x_2(t), \ldots, x_n = x_n(t), \) то переменная \(u \) будет зависеть от одного независимого аргумента \(t. \) В этом случае речь должна идти не о частной, а о полной производной \(\frac{du}{dt}, \) которая согласно (1.1) будет вычисляться по формуле

\[
\frac{du}{dt} = \frac{\partial u}{\partial x_1} \cdot \frac{dx_1}{dt} + \frac{\partial u}{\partial x_2} \cdot \frac{dx_2}{dt} + \ldots + \frac{\partial u}{\partial x_n} \cdot \frac{dx_n}{dt}. \tag{1.2}
\]

Если к тому же одна из промежуточных переменных совпадает с независимой переменной \(t \) (например, \(x_1 = t \)), то \(\frac{du}{dx_1} = \frac{\partial u}{\partial t}, \) \(\frac{dx_1}{dt} = 1, \) и формула (1.2) примет вид

\[
\frac{du}{dx_1} = \frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_2} \cdot \frac{dx_2}{dx_1} + \ldots + \frac{\partial u}{\partial x_n} \cdot \frac{dx_n}{dx_1}. \tag{1.3}
\]

Примеры решения задачи 3.

Пример 3.1. Найти частные производные \(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \) если \(u = \cos v + \ln(v^3 + w^3), \) а \(w = ye^x, \ v = xe^y. \)

Решение. Функция \(u \) является функцией двух переменных \(v \) и \(w. \) Переменные \(v \) и \(w \) в свою очередь являются функциями двух независимых переменных \(x \) и \(y. \)

Найдем частные производные:

\[
\frac{\partial w}{\partial x} = ye^x, \quad \frac{\partial w}{\partial y} = e^x, \quad \frac{\partial v}{\partial x} = e^y, \quad \frac{\partial v}{\partial y} = xe^y, \quad \frac{\partial u}{\partial v} = -\sin v + \frac{3v^2}{v^3 + w^3}, \quad \frac{\partial u}{\partial w} = \frac{3w^2}{v^3 + w^3}.
\]

Производные \(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \) найдем по формулам (1.1):

\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial u}{\partial w} \cdot \frac{\partial w}{\partial x} = \left(-\sin(xe^y) + \frac{3(xe^y)^2}{(xe^y)^3 + (ye^y)^3} \right) xe^y + \frac{3w^2}{v^3 + w^3} ye^x =
\]

\[
= \left(-\sin(xe^y) + \frac{3(xe^y)^2}{(xe^y)^3 + (ye^y)^3} \right) xe^y + \frac{3w^2}{v^3 + w^3} ye^x,
\]

\[
\frac{\partial u}{\partial y} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial u}{\partial w} \cdot \frac{\partial w}{\partial y} = \left(-\sin v + \frac{3v^2}{v^3 + w^3} \right) xe^y + \frac{3w^2}{v^3 + w^3} e^x =
\]

\[
= \left(-\sin v + \frac{3v^2}{v^3 + w^3} \right) xe^y + \frac{3w^2}{v^3 + w^3} e^x.
\]
Пример 3.2. Найти производную \(\frac{du}{dt} \), если \(u = xyz^3 \), а
\(x = \sqrt{t + 1}, \ y = t^2, \ z = \cos t \).

Решение. Так как функция \(u \) является функцией одной независимой переменной \(t \), то необходимо вычислить обыкновенную производную \(\frac{du}{dt} \).

Воспользуемся формулой (1.2):
\[
\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt}.
\]

Находим входящие в эту формулу производные:
\[
\frac{\partial u}{\partial x} = yz^3, \quad \frac{\partial u}{\partial y} = 2xyz^3, \quad \frac{\partial u}{\partial z} = 3x^2z^2, \quad \frac{dx}{dt} = \frac{1}{2\sqrt{t+1}}, \quad \frac{dy}{dt} = 2t, \quad \frac{dz}{dt} = -\sin t.
\]

Подставим их в формулу (1.2)
\[
\frac{du}{dt} = yz^3 \cdot \frac{1}{2\sqrt{t+1}} + 2xyz^3 \cdot 2t + 3x^2z^2 \cdot (-\sin t).
\]

Выразим переменные \(x, y, z \) через \(t \)
\[
\frac{du}{dt} = t^3 \cos^3 t \cdot \frac{1}{2\sqrt{t+1}} + 2\sqrt{t+1} \cos^3 t \cdot 2t - 3\sqrt{t+1} \cos^3 t \cdot \sin t =
\]
\[
= \frac{t^3 \cos^2 t}{2\sqrt{t+1}} \cdot (t \cos t + 8(t+1) \cos t - 6(t+1) \sin t).
\]

Пример 3.3. Найти частную производную \(\frac{\partial u}{\partial x} \) и полную производную \(\frac{du}{dx} \), если
\(u = xy^2z^3 \), где \(y = x^2, z = \sin x \).

Решение. Находим частную производную:
\(\frac{\partial u}{\partial x} = y^2z^3 \).

Полную производную \(\frac{du}{dx} \) находим по формуле (1.3).

Сначала находим
\[
\frac{\partial u}{\partial y} = 2xyz^3, \quad \frac{\partial u}{\partial z} = 3x^2z^2, \quad \frac{dy}{dx} = 2x, \quad \frac{dz}{dx} = \cos x.
\]

Затем согласно формуле (1.3) получаем
\[
\frac{du}{dx} = \frac{\partial u}{\partial x} \frac{dy}{dx} + \frac{\partial u}{\partial y} \frac{dy}{dx} + \frac{\partial u}{\partial z} \frac{dz}{dx} = y^2z^3 \cdot 2x + 3x^2z^2 \cdot \cos x =
\]
\[
= (x^2)^2 \sin^3 x + 2x^2 \sin^3 x \cdot 2x + 3x(x^2)^2 \sin^2 x \cdot \cos x = 5x^4 \sin^3 x + 3x^5 \sin^2 x \cos x.
\]

1.4. Производные неявной функции

Предположим, что выполнены следующие условия:
– функция \(F(x_1, x_2, \ldots, x_n, u) \) непрерывна в окрестности точки \((x_1, x_2, \ldots, x_n, u) \);
– частные производные $F'_{x_1}, F'_{x_2}, \ldots, F'_{x_n}, F'_u$ существуют и непрерывны в этой окрестности, причем $F'_u \neq 0$;
– координаты точки $(x_1, x_2, \ldots, x_n, u)$ удовлетворяют уравнению $F(x_1, x_2, \ldots, x_n, u) = 0$.
Тогда уравнение $F(x_1, x_2, \ldots, x_n, u) = 0$ имеет в окрестности точки $(x_1, x_2, \ldots, x_n, u)$ единственное решение. Это решение порождает функцию $u = f(x_1, x_2, \ldots, x_n)$, неявно заданную уравнением, причем частные производные этой функции находятся по формуле
\[
\frac{\partial u}{\partial x_k} = -\frac{F'_x(x_1, \ldots, x_n, u)}{F'_u(x_1, \ldots, x_n, u)}, \quad k = 1, \ldots, n.
\] (1.4)

В частности, если функция одного аргумента $y = f(x)$ неявно задается уравнением $F(x, y) = 0$, причем $F'_y \neq 0$, то ее производная может быть найдена по формуле
\[
\frac{dy}{dx} = -\frac{F'_y(x, y)}{F'_x(x, y)}.
\] (1.5)

Частные производные функции $z = f(x, y)$, неявно заданной уравнением $F(x, y, z) = 0$, находятся по формулам
\[
\frac{\partial z}{\partial x} = -\frac{F'_x(x, y, z)}{F'_z(x, y, z)}, \quad \frac{\partial z}{\partial y} = -\frac{F'_y(x, y, z)}{F'_z(x, y, z)},
\] (1.6)
при условии, что $F'_z(x, y, z) \neq 0$.

Замечание 1. Частную производную $\frac{\partial u}{\partial x_k}$ неявно заданной функции можно найти иначе. Для этого обе части уравнения $F(x_1, x_2, \ldots, x_n, u) = 0$ продифференцируем по x_k:
\[
\frac{\partial F}{\partial x_k} + \frac{\partial F}{\partial u} \frac{\partial u}{\partial x_k} = 0
\]
и найдем отсюда $\frac{\partial u}{\partial x_k}$.

Эта процедура обычно применяется для отыскания частных и смешанных производных второго и более высоких порядков. Например, для отыскания $\frac{\partial^2 u}{\partial x_k^2}$ полученное уравнение продифференцируем еще раз по x_k:

\[
\left(\frac{\partial F}{\partial x_k} + \frac{\partial F}{\partial u} \cdot \frac{\partial u}{\partial x_k} \right) = 0;
\]

\[
\left(\frac{\partial^2 F}{\partial x_k^2} + \frac{\partial^2 F}{\partial u \partial x_k} \cdot \frac{\partial u}{\partial x_k} + \frac{\partial F}{\partial x_k} \cdot \frac{\partial^2 u}{\partial x_k^2} \right) = 0.
\]

Отсюда легко найти $\frac{\partial^2 u}{\partial x_k^2}$.
Примеры решения задачи 4.

Пример 4.1. Найти производную первого порядка неявной функции $y(x)$, заданной уравнением $\ln(x^2 + 2y^2) = \tan(xy)$.

Решение.
1 способ: Производная неявной функции $y(x)$, заданной с помощью уравнения $F(x, y) = 0$, может быть найдена по формуле (1.5). В данном случае $F(x, y) = \ln(x^2 + 2y^2) - \tan(xy)$,

$$F'_x = \frac{2x}{x^2 + 2y^2} - \frac{y}{\cos^2(xy)}, \quad F'_y = \frac{4y}{x^2 + 2y^2} - \frac{x}{\cos^2(xy)}.$$

Находим производную неявной функции:

$$\frac{dy}{dx} = -\frac{F'_x}{F'_y} = -\frac{\frac{2x}{x^2 + 2y^2} - \frac{y}{\cos^2(xy)}}{\frac{4y}{x^2 + 2y^2} - \frac{x}{\cos^2(xy)}}.$$

2 способ: Продифференцируем обе части уравнения $\ln(x^2 + 2y^2) = \tan(xy)$ по переменной x, считая y функцией от x:

$$\left[\ln(x^2 + 2y^2)\right]' = [\tan(xy)]' \Rightarrow 2x + 2yy' = \frac{y + xy'}{\cos^2(xy)}.$$

Выражаем y':

$$y' = \frac{2x \cos^2(xy) - y(x^2 + 2y^2)}{4y \cos^2(xy) - x(x^2 + 2y^2)}.$$

Пример 4.2. Найти частные производные первого порядка неявной функции $z(x, y)$, заданной уравнением $5x^2y^3 + 2x^3 - y^2z = 0$.

Решение.
1 способ: Частные производные функции $z(x, y)$, заданной с помощью уравнения $F(x, y, z) = 0$, могут быть найдены по формулам (1.6). В данном случае $F(x, y, z) = 5x^2y^3 + 2x^3 - y^2z$, $F'_x = 10xy^3 + 2z^3$, $F'_y = 15x^2y^2 - 2yz$, $F'_z = 6xz^2 - y^2$.

Найдем частные производные неявной функции:

$$\frac{\partial z}{\partial x} = -\frac{F'_x}{F'_z} = -\frac{10xy^3 + 2z^3}{6xz^2 - y^2}, \quad \frac{\partial z}{\partial y} = -\frac{F'_y}{F'_z} = -\frac{15x^2y^2 - 2yz}{6xz^2 - y^2}.$$

12
2 способ: Продифференцируем обе части уравнения
\[5x^2y^3 + 2xz^3 - y^2z = 0 \]
по переменной \(x \), считая \(z \) функцией от \(x, y \):
\[
\left[5x^2y^3 + 2xz^3(x, y) - y^2z(x, y) \right]_x' = 0,
\]
\[
10xy^3 + 2z^3 + 6xz^2z_x' - y^2z_x' = 0.
\]
Выразаем \(z'_x \):
\[
z'_x = -\frac{10xy^3 + 2z^3}{6xz^2 - y^2}.
\]
Аналогично продифференцируем обе части уравнения
\[5x^2y^3 + 2xz^3 - y^2z = 0 \]
по переменной \(y \), считая \(z \) функцией от \(x, y \):
\[
\left[5x^2y^3 + 2xz^3(x, y) - y^2z(x, y) \right]_y' = 0,
\]
\[
15x^2y^2 + 6xz^2z_y' - 2y - y^2z_y' = 0.
\]
Выразаем \(z'_y \):
\[
z'_y = -\frac{15x^2y^2 - 2yz}{6xz^2 - y^2}.
\]

1.5. Дифференциал

Определение. Полным приращением функции \(u = f(x_1, x_2, \ldots, x_n) \) в точке \((x_1, x_2, \ldots, x_n) \), соответствующим приращениям аргументов \(\Delta x_1, \Delta x_2, \ldots, \Delta x_n \), называется разность \(\Delta u = f(x_1 + \Delta x_1, x_2 + \Delta x_2, \ldots, x_n + \Delta x_n) - f(x_1, x_2, \ldots, x_n) \).

Можно доказать, что если функция \(u = f(x_1, x_2, \ldots, x_n) \) имеет непрерывные частные производные в окрестности точки \((x_1, x_2, \ldots, x_n) \), то ее полное приращение представимо в виде
\[
\Delta u = \frac{\partial u}{\partial x_1} \Delta x_1 + \frac{\partial u}{\partial x_2} \Delta x_2 + \ldots + \frac{\partial u}{\partial x_n} \Delta x_n + o(1)\Delta r ,
\]
где \(\Delta r = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2 + \ldots + (\Delta x_n)^2} \), \(o(1) \) – бесконечно малая при \(\Delta r \to 0 \) функция аргументов \(x_1, x_2, \ldots, x_n \).

Главная, линейная часть полного приращения функции называется ее полным дифференциалом и обозначается символом \(du \) или \(df \). Согласно формуле (1.7) полный дифференциал функции \(u = f(x_1, x_2, \ldots, x_n) \) имеет вид
\[
du = \frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 + \ldots + \frac{\partial u}{\partial x_n} dx_n ,
\]
где \(dx_1 = \Delta x_1, dx_2 = \Delta x_2, \ldots, dx_n = \Delta x_n \) – дифференциалы независимых переменных.

Полным дифференциалом второго порядка \(d^2u \) называется полный дифференциал от дифференциала первого порядка: \(d^2u = d(du) \). Аналогично полный дифференциал третьего порядка \(d^3u \) – это полный дифференциал от дифференциала второго порядка: \(d^3u = d(d^2u) \). И так далее...
Можно доказать, что полный дифференциал любого порядка \(k \) вычисляется по формуле
\[
d^k u = \left(\frac{\partial}{\partial x_1} dx_1 + \frac{\partial}{\partial x_2} dx_2 + \ldots + \frac{\partial}{\partial x_n} dx_n \right)^k u ,
\] (1.9)
ge где \(\frac{\partial}{\partial x_k} \) — операция взятия частной производной по переменной \(x_k \).

Замечание. Согласно формулам (1.8), (1.9) дифференциалы первого, второго, третьего порядков для функции \(z = f(x, y) \) двух переменных будут вычисляться по формулам:
\[
dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy ,
\]
(1.10)
\[
d^2 z = \frac{\partial^2 z}{\partial x^2} dx^2 + 2 \frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} dy^2 ,
\]
\[
d^3 z = \frac{\partial^3 z}{\partial x^3} dx^3 + 3 \frac{\partial^3 z}{\partial x^2 \partial y} dx^2 dy + 3 \frac{\partial^3 z}{\partial x \partial y^2} dx dy^2 + \frac{\partial^3 z}{\partial y^3} dy^3 .
\] (1.11)

Для функции трех переменных \(u = f(x, y, z) \) дифференциалы первого и второго порядка находятся по формулам:
\[
du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz ,
\]
(1.12)
\[
d^2 u = \frac{\partial^2 u}{\partial x^2} dx^2 + \frac{\partial^2 u}{\partial y^2} dy^2 + \frac{\partial^2 u}{\partial z^2} dz^2 + 2 \left(\frac{\partial^2 u}{\partial x \partial y} dx dy + \frac{\partial^2 u}{\partial y \partial z} dy dz + \frac{\partial^2 u}{\partial x \partial z} dx dz \right) .
\] (1.13)

Примеры решения задачи 5.

Пример 5.1. Найти дифференциал третьего порядка \(d^3 u \) и функции \(u = e^y \ln x \).
Решение. Используем формулу (1.11). Найдем частные и смешанные производные третьего порядка:
\[
u_x' = e^y \cdot \frac{1}{x} , \quad u_y' = e^y \ln x ,
\]
\[
u_{xx}'' = e^y \left(-\frac{1}{x^2} \right) , \quad u_{yy}'' = e^y \ln x ,
\]
\[
u_{xxx}''' = e^y \left(\frac{2}{x^3} \right) , \quad u_{xxy}''' = e^y \left(-\frac{1}{x^2} \right) , \quad u_{yyy}''' = e^y \cdot \frac{1}{x} , \quad u_{yyy}''' = e^y \ln x .
\]
Найденные производные подставляем в формулу (1.11) и получаем:
Пример 5.2. Найти дифференциал второго порядка \(d^2u\) функции \(u = x^2 + y^3 + z^4 + xyz\).

Решение. Для нахождения дифференциала второго порядка функции трех переменных воспользуемся формулой (1.13). Найдем все частные производные до второго порядка включительно:

\[
\begin{align*}
 u' &= 2x + yz, \\
 u' &= 3y^2 + xz, \\
 u' &= 4z^3 + xy, \\
 u''_{xx} &= 2, \\
 u''_{yy} &= 6y, \\
 u''_{zz} &= 12z^2, \\
 u''_{xy} &= z, \\
 u''_{yz} &= x, \\
 u''_{xz} &= y.
\end{align*}
\]

Тогда по формуле (1.13) дифференциал второго порядка функции \(u\) трех переменных имеет вид:

\[
d^2u = 2dx^2 + 6ydy^2 + 12z^2dz^2 + 2(zdxdy + xdydz + ydxdz).
\]

1.6. Применение дифференциала в приближенных вычислениях значений функций

Согласно формулам (1.7), (1.8) полное приращение \(\Delta f\) (или \(\Delta u\)) функции \(u = f(x_1, x_2, ..., x_n)\) отличается от ее дифференциала \(df\) (или \(du\)) на величину \(o(1)\Delta r\), которая имеет порядок малости более высокий, чем \(\Delta r\). Поэтому, если в формуле (1.7) отбросить член \(o(1)\Delta r\), то получим приближенную формулу \(\Delta f \approx df\), которая будет тем точнее, чем меньше \(\Delta r\). Запишем эту формулу подробно:

\[
f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n) - f(x_1, x_2, ..., x_n) \approx f'_x(x_1, x_2, ..., x_n) \Delta x_1 + f'_x(x_1, x_2, ..., x_n) \Delta x_2 + ... + f'_x(x_1, x_2, ..., x_n) \Delta x_n.
\]

Для функции \(f(x, y)\) двух переменных формула (1.14) перепишется в виде

\[
f(x + \Delta x, y + \Delta y) \approx f(x, y) + f'_x(x, y) \Delta x + f'_y(x, y) \Delta y.
\]

Перепишем формулу (1.15), переобозначив точку \((x, y)\) как \((x_0, y_0)\), а точку \((x + \Delta x, y + \Delta y)\) как \((x, y)\) и заменив \(\Delta x = x - x_0\), \(\Delta y = y - y_0\). В итоге получим следующую приближенную формулу

\[
f(x, y) \approx f(x_0, y_0) + f'_x(x_0, y_0)(x_0 - x) + f'_y(x_0, y_0)(y_0 - y).
\]
Эта формула называется формулой линеаризации функции двух аргументов; она широко используется в технических приложениях.

Пример решения задачи 6.
Вычислить приближенное значение функции \(z(x, y) = x^2 - 2xy + x + 3y \) в точке \(A(3,94; 2,01) \).

Решение. Приближенное значение функции \(z(x, y) \) в точке \(A \) вычислим, используя формулу (1.16). Полагаем \(x = 3,94, y = 2,01, x_0 = 4, y_0 = 2 \).

Находим \(f(4,2) = 4^2 - 2 \cdot 4 \cdot 2 + 4 \cdot 2 = 10 \), \(f'_x = 2x - 2y + 1 \), \(f'_y = -2x + 3 \), \(f'_x(4,2) = 5 \), \(f'_y(4,2) = -5 \). Подставим в формулу (1.16): \(f(3,94; 2,01) \approx 10 + 5(3,94 - 4) - 5(2,01 - 2) = 9,65 \).

Отметим, что точное значение \(f(3,94; 2,01) = 9,6548 \), то есть погрешность вычислений составляет \(|9,65 - 9,6548| = 0,0048 \).

1.7. Формулы Тейлора и Маклорена

Если функция \(f(x, y) \) двух переменных имеет в некоторой окрестности точки \((x_0, y_0) \) непрерывные частные производные всех порядков до \((k + 1) \)-го включительно, то в этой окрестности справедлива следующая формула Тейлора

\[
f(x, y) = f(x_0, y_0) + \frac{df(x_0, y_0)}{1!} + \frac{d^2f(x_0, y_0)}{2!} + ... + \frac{d^k f(x_0, y_0)}{k!} + o(1)(\Delta r)^k.
\]

Напоминаем, что \(\Delta r = \sqrt{\Delta x^2 + \Delta y^2} \), \(o(1) \) — бесконечно малая при \(\Delta r \to 0 \).

Слагаемое \(o(1)(\Delta r)^k \) называется остаточным членом формулы Тейлора, записанным в форме Пеано\(^1\). В частном случае при \(x_0 = y_0 = 0 \) формула (1.17) называется формулой Маклорена. Отметим, что и в случае большего числа переменных формула Тейлора (1.17) сохраняет свой вид.

Пример решения задачи 7.
Разложить функцию \(z(x, y) = e^{2x-3y} \) в окрестности точки \(M(2,1) \), ограничиваясь членами второго порядка включительно

Решение. В данном случае формула Тейлора (1.17) принимает вид

\[
f(x, y) = f(x_0, y_0) + \frac{df(x_0, y_0)}{1!} + \frac{d^2f(x_0, y_0)}{2!} + o(1)(\Delta r)^2.
\]

Найдем значения функции и всех частных производных функции до второго порядка включительно в точке \(M(2,1) \):

\[
f(2,1) = e, \quad f'_x(x, y) = e^{2x-3y} \cdot 2, \quad f'_x(2,1) = 2e, \quad f'_y(x, y) = e^{2x-3y} \cdot (-3), \quad f'_y(2,1) = -3e,
\]

\(^1\) Существуют и другие способы записи остаточного члена, например, в форме Лагранжа.
Находим дифференциалы функции до второго порядка включительно:

\[df(2,1) = f'_x(2,1)dx + f'_y(2,1)dy = 2e\Delta x - 3e\Delta y = 2e(x-2) - 3e(y-1), \]
\[d^2 f(2,1) = f''_{xx}(2,1)dx^2 + 2f''_{xy}(2,1)dxdy + f''_{yy}(2,1)dy^2 = 4e\Delta x^2 - 12e\Delta x \Delta y + 9e\Delta y^2 = \]
\[= 4e(x-2)^2 - 12e(x-2)(y-1) + 9e(y-1)^2. \]

Следовательно,
\[e^{2x-3y} = e + 2e(x-2) - 3e(y-1) + 2e(x-2)^2 - 6e(x-2)(y-1) + \frac{9e}{2}(y-1)^2 + o(1)(\Delta r)^2. \]

1.8. Касательная плоскость и нормаль к поверхности

Определение. Касательной плоскостью к поверхности в ее точке \(M_0 \) называется плоскость, содержащая в себе касательные ко всем кривым, проведенным на поверхности через точку \(M_0 \). Точка \(M_0 \) называется точкой касания.

Определение. Нормалью к поверхности в ее точке \(M_0 \) называется прямая, проходящая через точку \(M_0 \) перпендикулярно касательной плоскости, построенной к поверхности в точке \(M_0 \).

Если поверхность является графиком функции \(z = f(x, y) \), то уравнение касательной плоскости в точке \(M_0(x_0, y_0, z_0) \), где \(z_0 = f(x_0, y_0) \) имеет вид:
\[z - z_0 = f'_x(x_0, y_0)(x-x_0) + f'_y(x_0, y_0)(y-y_0), \quad (1.18) \]
а уравнения нормали – вид:
\[\frac{x-x_0}{f'_x(x_0, y_0)} = \frac{y-y_0}{f'_y(x_0, y_0)} = \frac{z-z_0}{-1}. \quad (1.19) \]

Если же поверхность задана уравнением \(F(x, y, z) = 0 \), то уравнение касательной плоскости в точке \(M_0(x_0, y_0, z_0) \) имеет вид
\[F'_x(x_0, y_0, z_0)(x-x_0) + F'_y(x_0, y_0, z_0)(y-y_0) + F'_z(x_0, y_0, z_0)(z-z_0) = 0, \quad (1.20) \]
а уравнения нормали – вид:
\[\frac{x-x_0}{F'_x(x_0, y_0, z_0)} = \frac{y-y_0}{F'_y(x_0, y_0, z_0)} = \frac{z-z_0}{F'_z(x_0, y_0, z_0)}. \quad (1.21) \]

Примеры решения задачи 8.

Пример 8.1. Составить уравнение касательной плоскости и уравнения нормали к поверхности \(z = 2x^2 - 3xy + x + 5y \) в точке \(M_0(1,2,7) \).
Решение. Если поверхность задана уравнением вида \(z = f(x, y) \), то касательная плоскость в точке \(M_0(x_0, y_0, z_0) \) имеет уравнение (1.18), а нормаль — уравнение (1.19).
Найдем значения частных производных \(f'_x, f'_y \) в точке (1,2):
\[
\begin{align*}
f'_x &= 4x - 3y + 1, \quad f'_y = -3x + 5, \quad f'_x(1,2) = -1, \quad f'_y(1,2) = 2.
\end{align*}
\]
Подставляя найденные значения в уравнения (1.18), (1.19), получим:
\[
z = 7 - (x - 1) + 2(y - 2) \quad \text{или} \quad x - 2y + z - 4 = 0 - \text{уравнение касательной плоскости;}
\]
\[
\frac{x - 1}{-1} = \frac{y - 2}{2} = \frac{z - 7}{-1} - \text{уравнения нормали}.
\]
Пример 8.2. Составить уравнение касательной плоскости и уравнения нормали к поверхности \(2x^2 - 3y^2 = xz^2 - 7 \) в точке \(M_0(1,0,3) \).
Решение. Все члены уравнения \(2x^2 - 3y^2 = xz^2 - 7 \) перенесем влево и обозначим \(F = 2x^2 - 3y^2 - xz^2 + 7 \). Уравнение касательной плоскости будем искать по формуле (1.20), а уравнения нормали – по формуле (1.21).
Найдем значения частных производных \(F'_x, F'_y, F'_z \) в точке \(M_0 : \)
\[
\begin{align*}
F'_x &= 4x - z^2, \quad F'_y = -6y, \quad F'_z = -2xz, \quad F'_x(1,0,3) = -5, \quad F'_y(1,0,3) = 0, \quad F'_z(1,0,3) = -6.
\end{align*}
\]
Подставляя найденные значения в уравнения касательной плоскости и нормали, получим: \(-5(x - 1) - 6(z - 3) = 0 \) или \(5x + 6z - 23 = 0 - \text{уравнение касательной плоскости;}
\]
\[
\frac{x - 1}{-5} = \frac{y}{0} = \frac{z - 3}{-6} - \text{уравнения нормали.}
\]

1.9. Градиент и производная по направлению

Пусть функция \(z = f(x, y) \) определена в окрестности точки \(M(x, y) \) и пусть \(\vec{a} \) — вектор, исходящий из этой точки. На оси вектора \(\vec{a} \) возьмем точку \(M_1(x + \Delta x, y + \Delta y) \) и введем в рассмотрение вектор \(\Delta \vec{a} = MM_1 \) (см. рис.1.2).
Разность \(\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) \) называется приращением функции \(z = f(x, y) \) в направлении вектора \(\vec{a} \).
Определение. Частной производной \(\frac{\partial z}{\partial a} \) (или \(\frac{\partial f}{\partial a} \)) функции \(z = f(x, y) \) по направлению вектора \(\vec{a} \) в точке \(M(x, y) \) называется предел (если он существует)

\[
\frac{\partial z}{\partial a}(M) = \lim_{|\Delta z| \to 0} \frac{A_{\vec{a}}z}{|A_{\vec{a}}|} = \lim_{M \to M} \frac{f(x + \Delta x, y + \Delta y) - f(x, y)}{\sqrt{\Delta x^2 + \Delta y^2}}
\]

Понятие производной по направлению является обобщением понятия частных производных. Производная по направлению \(\vec{a} \) в точке \(M \) характеризует изменение функции в этой точке в направлении вектора \(\vec{a} \).

Если функция \(z = f(x, y) \) имеет непрерывные частные производные в точке \(M(x, y) \), то в этой точке производная по направлению существует и вычисляется по формуле

\[
\frac{\partial z}{\partial a} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial y} \cos \beta,
\]

где \(\cos \alpha, \cos \beta \) - направляющие косинусы вектора \(\vec{a} \).

Определение. Градиентом функции \(z = f(x, y) \) в точке \(M(x, y) \) называется вектор, координатами которого являются частные производные функции, т.е.

\[
\text{grad } z = \frac{\partial z}{\partial x} i + \frac{\partial z}{\partial y} j. \tag{1.22}
\]

Замечание. Аналогично определяются производная по направлению и градиент функции \(n \) переменных (\(n > 2 \)). Например, для функции трех переменных \(u = f(x, y, z) \):

\[
\frac{\partial u}{\partial a} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma,
\]

\[
\text{grad } u = \frac{\partial u}{\partial x} i + \frac{\partial u}{\partial y} j + \frac{\partial u}{\partial z} k.
\]

Градиент и производная по направлению \(\vec{a} \) связаны между собой соотношением

\[
\frac{\partial z}{\partial a} = (\text{grad } z, \vec{a}_0), \tag{1.23}
\]

т.е. производная по направлению \(\vec{a} \) равна скалярному произведению градиента и единичного вектора \(\vec{a}_0 = \frac{\vec{a}}{|\vec{a}|} \).

Пример решения задачи 9.

Даны: функция \(z(x, y) = \arcsin \sqrt{x^2 + y^2} \), точка \(A \left(\frac{1}{2}, \frac{1}{2} \right) \) и вектор \(\vec{a} = \{-5, 12\} \).

Найти: 1) \(\text{grad } z \) в точке \(A \); 2) производную в точке \(A \) по направлению вектора \(\vec{a} \).
Решение. Найдем \(\text{grad} z \) в точке \(A \), для этого вычислим \(\frac{\partial z}{\partial x} \) и \(\frac{\partial z}{\partial y} \) в точке \(A \).

Имеем:

\[
\frac{\partial z}{\partial x} = \frac{1}{\sqrt{1-x^2-y^2}} \cdot \frac{x}{\sqrt{x^2+y^2}}, \quad \frac{\partial z}{\partial y} (A) = 1,
\]

\[
\frac{\partial z}{\partial y} = \frac{1}{\sqrt{1-x^2-y^2}} \cdot \frac{y}{\sqrt{x^2+y^2}}, \quad \frac{\partial z}{\partial y} (A) = 1.
\]

Таким образом, \(\text{grad} z(A) = \mathbf{i} + \mathbf{j} = [1, 1] \).

Для нахождения производной функции \(z = f(x, y) \) в направлении вектора \(\mathbf{a} = [-5, 12] \) воспользуемся формулой (1.23). Для этого найдем единичный вектор \(\mathbf{a}_0 = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{[-5, 12]}{\sqrt{25+144}} = \left[\frac{-5}{13}, \frac{12}{13} \right] \).

Тогда \(\frac{\partial z}{\partial \mathbf{a}} (A) = \langle \text{grad} z(A), \mathbf{a}_0 \rangle = 1 \cdot \left[\frac{-5}{13} \right] + 1 \cdot \frac{12}{13} = \frac{7}{13} \).

1.10. Экстремум функции нескольких переменных

Пусть функция \(u = f(x_1, x_2, \ldots, x_n) \) определена в некоторой окрестности точки \(M_0 \left(x_1^0, x_2^0, \ldots, x_n^0 \right) \).

Определение. Функция \(u = f(x_1, x_2, \ldots, x_n) \) имеет максимум (минимум) в точке \(M_0 \left(x_1^0, x_2^0, \ldots, x_n^0 \right) \), если существует такая окрестность точки \(M_0 \), в которой для всех точек \(M(x_1, x_2, \ldots, x_n) \) (\(M \neq M_0 \)) выполняется неравенство \(f(M_0) > f(M) \) (соответственно \(f(M_0) < f(M) \)).

Максимум или минимум функции называются ее экстремумом, а точки, в которых функция имеет экстремум, называются точками экстремума (максимума или минимума).

Необходимое условие экстремума. Если \(M_0 \left(x_1^0, x_2^0, \ldots, x_n^0 \right) \) – точка экстремума функции \(u = f(x_1, x_2, \ldots, x_n) \), и функция имеет частные производные в этой точке, то частные производные равны нулю, т.е.

\[
\frac{\partial f(M_0)}{\partial x_i} = 0 \quad (i = 1, \ldots, n).
\]

Точки, в которых выполняются эти условия, называются стационарными точками функции \(u = f(x_1, x_2, \ldots, x_n) \).

Достаточное условие экстремума. Пусть \(M_0 \left(x_1^0, x_2^0, \ldots, x_n^0 \right) \) – стационарная точка функции \(u = f(x_1, x_2, \ldots, x_n) \), причем эта функция в некоторой окрестности точки \(M_0 \) имеет непрерывные частные и смешанные производные до второго порядка включительно. Тогда:
если \(d^2 f(x_1^0, x_2^0, \ldots, x_n^0) > 0 \) при любых значениях \(\Delta x_1, \Delta x_2, \ldots, \Delta x_n \), не
равных одновременно нулю, то \(M_0(x_1^0, x_2^0, \ldots, x_n^0) \) – точка минимума;

если \(d^2 f(x_1^0, x_2^0, \ldots, x_n^0) < 0 \) при любых значениях \(\Delta x_1, \Delta x_2, \ldots, \Delta x_n \), не
равных одновременно нулю, то \(M_0(x_1^0, x_2^0, \ldots, x_n^0) \) – точка максимума;

если \(d^2 f(x_1^0, x_2^0, \ldots, x_n^0) \) принимает значения разных знаков в зависимости
от \(\Delta x_1, \Delta x_2, \ldots, \Delta x_n \), то экстренум в точке \(M_0 \) нет;

если \(d^2 f(x_1^0, x_2^0, \ldots, x_n^0) = 0 \) для набора значений \(\Delta x_1, \Delta x_2, \ldots, \Delta x_n \), не равных
нулю одновременно, то требуются дополнительные исследования.

Замечание. Для функции двух переменных \(z = f(x, y) \) необходимое
условие экстремума принимает вид:

\[
f'_x(x, y) = 0, \quad f'_y(x, y) = 0,
\]

(1.24)
a достаточное условие экстремума можно переформулировать следующим образом. Пусть \(M_0(x_0, y_0) \) – стационарная точка функции \(z = f(x, y) \).

Вычисляем определитель

\[
D = \begin{vmatrix}
 f''_{xx}(x_0, y_0) & f''_{xy}(x_0, y_0) \\
 f''_{yx}(x_0, y_0) & f''_{yy}(x_0, y_0)
\end{vmatrix}.
\]

Тогда:

- если \(D > 0 \), то функция \(z = f(x, y) \) имеет в точке \(M_0(x_0, y_0) \) экстремум,
 а именно максимум при \(f''_{xx}(x_0, y_0) < 0 \) и минимум при \(f''_{xx}(x_0, y_0) > 0 \);

- если \(D < 0 \), то экстремум в точке \(M_0(x_0, y_0) \) отсутствует;

- если \(D = 0 \), то требуются дополнительные исследования.

Для функции \(u = f(x, y, z) \) трех переменных необходимое условие
экстремума принимает вид:

\[
f'_x(x, y, z) = 0, \quad f'_y(x, y, z) = 0, \quad f'_z(x, y, z) = 0,
\]
a достаточное условие экстремума преобразуется так:

- если в стационарной точке \(M_0(x_0, y_0, z_0) \) выполняются неравенства:

\[
f''_{xx} > 0, \quad \begin{vmatrix}
 f''_{xx} & f''_{xy} \\
 f''_{yx} & f''_{yy}
\end{vmatrix} > 0, \quad \begin{vmatrix}
 f''_{xx} & f''_{xy} & f''_{xz} \\
 f''_{yx} & f''_{yy} & f''_{yz} \\
 f''_{zx} & f''_{zy} & f''_{zz}
\end{vmatrix} > 0,
\]

то \(M_0(x_0, y_0, z_0) \) – точка минимума функции \(u = f(x, y, z) \);

- если в стационарной точке \(M_0(x_0, y_0, z_0) \) выполняются неравенства:

\[
f''_{xx} < 0, \quad \begin{vmatrix}
 f''_{xx} & f''_{xy} \\
 f''_{yx} & f''_{yy}
\end{vmatrix} > 0, \quad \begin{vmatrix}
 f''_{xx} & f''_{xy} & f''_{xz} \\
 f''_{yx} & f''_{yy} & f''_{yz} \\
 f''_{zx} & f''_{zy} & f''_{zz}
\end{vmatrix} < 0,
\]

21
то $M_0(x_0, y_0, z_0)$ — точка максимума функции $u = f(x, y, z)$.

Во всех остальных случаях экстремума в точке $M_0(x_0, y_0, z_0)$ либо нет, либо нужны дополнительные исследования.

Пример решения задачи 10.

Найти экстремумы функции двух переменных $f(x, y) = 2x^3 + \frac{1}{3}y^2 + \frac{6}{x} - \frac{18}{y}$.

Решение.

Найдем стационарные точки функции. Для этого найдем частные производные функции:

\[f'_x = 6x^2 - \frac{6}{x^2}, \quad f'_y = \frac{2}{3}y + \frac{18}{y^2} \]

и приравняем их к нулю. Получим систему уравнений

\[6x^2 - \frac{6}{x^2} = 0, \quad \frac{2}{3}y + \frac{18}{y^2} = 0. \]

Решая данную систему, получаем две стационарные точки $M_1(1, -3), \ M_2(-1, -3)$.

Рассмотрим точку $M_1(1, -3)$. Находим $f''_{xx}(M_1) = 12x + \frac{12}{x^3}, \quad f''_{yy}(M_1) = \frac{2}{3} - \frac{36}{y^3}$,

\[f''_{xy}(M_1) = 0, \quad f''_{xx}(M_1) = 24, \quad f''_{yy}(M_1) = 2, \quad f''_{xy}(M_1) = 0. \]

Тогда

\[\begin{vmatrix} f''_{xx}(M_1) & f''_{xy}(M_1) \\ f''_{yx}(M_1) & f''_{yy}(M_1) \end{vmatrix} = 48 > 0, \quad f''_{xx}(M_1) > 0. \]

Значит, точка $M_1(1, -3)$ является точкой минимума. Найдем минимум функции: $f_{min}(M_1) = 17$.

Рассмотрим точку $M_2(-1, -3)$. Находим $f''_{xx}(M_2) = -24, \quad f''_{yy}(M_2) = 2, \quad f''_{xy}(M_2) = 0$. Тогда

\[\begin{vmatrix} f''_{xx}(M_2) & f''_{xy}(M_2) \\ f''_{yx}(M_2) & f''_{yy}(M_2) \end{vmatrix} = -48 < 0. \]

Значит, в точке $M_2(-1, -3)$ экстремума нет.

Пример решения задачи 11.

Найти экстремумы функции трех переменных $u = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z}$ в области $x > 0, y > 0, z > 0$.

Решение. Найдем стационарные точки заданной функции u. Для этого найдем частные производные функции

\[u'_x = 1 - \frac{y^2}{4x^2}, \quad u'_y = \frac{2y}{4x} - \frac{z^2}{y^2}, \quad u'_z = \frac{2z}{y} - \frac{2}{z^2}. \]
и приравниваем их к нулю; получим систему уравнений
\[
1 - \frac{y^2}{4x^2} = 0, \quad \frac{2y}{4x} - \frac{z^2}{y^2} = 0, \quad \frac{2z}{y} - \frac{2}{z^2} = 0
\]
с ограничением: \(x > 0, y > 0, z > 0 \). Эта система равносильна следующей:
\[
y^2 = 4x^2, \quad y^3 = 4xz^2, \quad y = z^3, \quad x > 0, y > 0, z > 0.
\]
С помощью третьего уравнения неизвестное \(y \) исключим из второго и получим \(x = 0,5z^7 \). Неизвестные \(x, y \) из второго и третьего уравнений подставим в первое; первое уравнение примет вид: \(z^6 = z^{14} \). Отсюда с учетом условия: \(z > 0 \) находим \(z = 1 \); тогда \(x = 0,5, y = 1 \). Положим стационарную точку \(M_0(0,5; 1; 1) \).

Проверим точку \(M_0 \) «на экстремальность». Найдем частные производные второго порядка:
\[
u''_{xx} = \frac{y^2}{2x^3}, \quad u''_{xy} = \frac{1}{2x} + \frac{2z^2}{y^3}, \quad u''_{xz} = \frac{2}{y} + 4, \quad u''_{yy} = -\frac{y}{2x^2}, \quad u''_{zz} = 0, \quad u''_{yz} = -\frac{2z}{y^2}.
\]
Вычислим их значения в стационарной точке \(M_0(0,5; 1; 1) \):
\[
u''_{xx} = 4, \quad u''_{yy} = 3, \quad u''_{zz} = 6, \quad u''_{xy} = -2, \quad u''_{xz} = 0, \quad u''_{yz} = -2.
\]
Так как
\[
\left| \begin{array}{cc}
u''_{xx} & u''_{xy} \\ u''_{xy} & u''_{yy} \end{array} \right| > 0, \quad \left| \begin{array}{ccc}
u''_{xx} & u''_{xy} & u''_{xz} \\ u''_{xy} & u''_{yy} & u''_{yz} \\ u''_{xz} & u''_{yz} & u''_{zz} \end{array} \right| > 0,
\]
то согласно сделанному выше замечанию, точка \(M_0(0,5; 1; 1) \) является точкой минимума функции \(u = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z} \). Значение функции в точке минимума \(u_{\min} = 4 \).

1.11. Условный экстремум функции нескольких переменных

Рассмотрим задачу о нахождении экстремума функции \(u = f(x_1, x_2, \ldots, x_n) \) при условии, что \(x_1, x_2, \ldots, x_n \) связаны уравнениями
\[
\phi_k(x_1, x_2, \ldots, x_n) = 0, \quad (k = 1, \ldots, m; \quad m < n).
\]
Уравнения (1.25) называются уравнениями связи.

Определение. Функция \(u = f(x_1, x_2, \ldots, x_n) \) имеет условный максимум (условный минимум) в точке \(M_0(x_1^0, x_2^0, \ldots, x_n^0) \), если существует окрестность точки \(M_0 \), в которой для всех точек \(M(x_1, x_2, \ldots, x_n) \), отличных от \(M_0 \) и удовлетворяющих уравнениям связи (1.25), выполняется неравенство \(f(M_0) > f(M) \) (соответственно \(f(M_0) < f(M) \)).
Задача нахождения условного экстремума сводится к исследованию на обычный экстремум функции Лагранжа

\[L(x_1, ..., x_n, \lambda_1, ..., \lambda_m) = f(x_1, x_2, ..., x_n) + \sum_{k=1}^{m} \lambda_k \phi_k(x_1, x_2, ..., x_n), \]

где постоянные \(\lambda_k \) (\(k = 1, ..., m \)) называются множителями Лагранжа.

Необходимое условие условного экстремума. Если функция \(u = f(x_1, x_2, ..., x_n) \) имеет условный экстремум в точке \(M_0(x_1^0, x_2^0, ..., x_n^0) \), то в этой точке выполняются условия

\[\frac{\partial L(M_0)}{\partial x_i} = 0 \quad (i = 1, ..., n), \quad \frac{\partial L(M_0)}{\partial \lambda_k} = 0 \quad (k = 1, ..., m). \]

Поэтому для нахождения точки, в которой возможен условный экстремум, нужно решить систему \(m + n \) уравнений:

\[\frac{\partial f(x_1, x_2, ..., x_n)}{\partial x_i} + \sum_{k=1}^{m} \lambda_k \frac{\partial \phi_k(x_1, x_2, ..., x_n)}{\partial x_i} = 0, \quad (i = 1, ..., n), \]

\[\phi_k(x_1, x_2, ..., x_n) = 0 \quad (k = 1, ..., m), \]

относительно неизвестных \(x_1^0, x_2^0, ..., x_n^0, \lambda_1^0, \lambda_2^0, ..., \lambda_m^0 \).

Достаточное условие условного экстремума. Пусть \(x_1^0, x_2^0, ..., x_n^0, \lambda_1^0, \lambda_2^0, ..., \lambda_m^0 \) решение системы (1.26). Функция \(u = f(x_1, x_2, ..., x_n) \) условный максимум, если выполняется неравенство

\[d^2 L(x_1^0, x_2^0, ..., x_n^0, \lambda_1^0, \lambda_2^0, ..., \lambda_m^0) < 0, \]

и условный минимум, если выполняется неравенство

\[d^2 L(x_1^0, x_2^0, ..., x_n^0, \lambda_1^0, \lambda_2^0, ..., \lambda_m^0) > 0, \]

Причем выполняется при любых значениях \(dx_1, dx_2, ..., dx_n \), не равных нулю одновременно, и таких, что \(\frac{\partial \phi_k(x_1^0, ..., x_n^0)}{\partial x_i} dx_i + ... + \frac{\partial \phi_k(x_1^0, ..., x_n^0)}{\partial x_n} dx_n = 0 \quad (k = 1, ..., m). \)

Замечание. Для функции \(z = f(x, y) \) двух переменных при уравнении связи \(\phi(x, y) = 0 \) функция Лагранжа примет вид

\[L(x, y) = f(x, y) + \lambda \phi(x, y). \]

При этом система (1.26) запишется в виде:

\[\begin{cases} L_x(x, y, \lambda) = 0, \\ L_y(x, y, \lambda) = 0, \end{cases} \quad \iff \quad \begin{cases} f_x'(x, y) + \lambda \phi_x'(x, y) = 0, \\ f_y'(x, y) + \lambda \phi_y'(x, y) = 0, \end{cases} \]

\[\phi(x, y) = 0. \]
Решая эту систему, находим точки, «подозрительные на экстремум». Пусть \((x_0, y_0, \lambda_0)\) – решение этой системы. Составим определитель

\[
\Delta = \begin{vmatrix}
0 & \varphi'_x(x_0, y_0) & \varphi'_y(x_0, y_0) \\
\varphi'_x(x_0, y_0) & L''_{xx}(x_0, y_0, \lambda_0) & L''_{xy}(x_0, y_0, \lambda_0) \\
\varphi'_y(x_0, y_0) & L''_{yx}(x_0, y_0, \lambda_0) & L''_{yy}(x_0, y_0, \lambda_0)
\end{vmatrix}.
\]

Тогда, если \(\Delta < 0\), то функция \(z = f(x, y)\) имеет в точке \(M_0(x_0, y_0)\) условный максимум; если \(\Delta > 0\) – условный минимум.

Примеры решения задачи 12.

Пример 12.1. Найти условный экстремум функции \(z = \frac{1}{x^2} - \frac{1}{8y^2}\) при уравнении связи \(x - y = 2\).

Решение.

Составим функцию Лагранжа:

\[L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = \frac{1}{x^2} - \frac{1}{8y^2} + \lambda(x - y - 2), \quad \lambda = \text{const}.\]

Найдем точки, в которых возможен условный экстремум. Для этого составляем систему уравнений:

\[
\begin{cases}
L'_x \equiv -\frac{2}{x^3} + \lambda = 0, \\
L'_y \equiv \frac{1}{4y^3} - \lambda = 0, \\
x - y - 2 = 0
\end{cases}
\]

и решаем ее. Из первого уравнения выражаем \(\lambda = \frac{2}{x^3}\), из второго уравнения выражаем \(\lambda = \frac{1}{4y^3}\). Приравнивая \(\frac{2}{x^3} = \frac{1}{4y^3}\), получаем \(x = 2y\). Подставим в третье уравнение \(2y - y - 2 = 0 \Rightarrow y = 2\). Таким образом, система имеет единственное решение \(x = 4, y = 2, \lambda = \frac{1}{32}\).

Находим \(d^2L(4,2) = L''_{xx}(4,2)dx^2 + 2L''_{xy}(4,2)dxdy + L''_{yy}(4,2)dy^2 = \frac{3}{128}dx^2 - \frac{3}{64}dy^2\).

Дифференцируя уравнение связи, получаем \(dx - dy = 0\), откуда \(dx = dy\).

Подставляя \(dy\) в выражение для \(d^2L\), получаем:

\[d^2L = \frac{3}{128}dx^2 - \frac{3}{64}dx^2 = -\frac{3}{128}dx^2 < 0.\]

Значит, функция \(z = \frac{1}{x^2} - \frac{1}{8y^2}\) имеет
условный максимум при \(x = 4, y = 2 \). Значение функции в точке условного максимума \(z_{\text{max}} = \frac{1}{32} \).

Пример 12.2. Найти условный экстремум функции двух переменных \(z = x + y - 1 \), если уравнение связи имеет вид \(y^3 - 6xy + x^3 = 0 \).

Решение. Составляем функцию Лагранжа
\[
L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x + y - 1 + \lambda \left(y^3 - 6xy + x^3 \right), \quad \lambda = \text{const}
\]
и находим ее стационарные точки
\[
\begin{align*}
L'_x &\equiv 1 + \lambda (-6y + 3x^2) = 0, \\
L'_y &\equiv 1 + \lambda (3y^2 - 6x) = 0, \\
L'_\lambda &\equiv y^3 - 6xy + x^3 = 0.
\end{align*}
\]

Из первого и второго уравнений системы выражаем \(\lambda \) и приравниваем полученные выражения:
\[
\frac{1}{-6y + 3x^2} = \frac{1}{3y^2 - 6x},
\]
отсюда \(-6y + 3x^2 = 3y^2 - 6x\) или \(2(x - y) = (y - x)(y + x)\).

Рассмотрим два случая:

1) \(x - y = 0 \), тогда \(x = y \). Подставляем в уравнение связи: \(2x^3 - 6x^2 = 0 \);
находим два корня \(x_1 = 0, x_2 = 3 \), тогда \(y_1 = 0, y_2 = 3 \). Значения \(x_1 = 0, y_1 = 0 \) не являются решениями системы, значения \(x_2 = 3, y_2 = 3 \) – ее решения при \(\lambda = -\frac{1}{9} \).

2) \(x + y = -2 \), тогда \(y = -2 - x \). Подставляем в уравнение связи:
\(- (2 + x)^3 + 6x(2 + x) + x^3 = 0\) или, \(-8 = 0\), что неверно. Решений нет.

Значит, система имеет единственное решение \(x = y = 3, \lambda = -\frac{1}{9} \).

Воспользуемся достаточным условием условного экстремума. Найдем частные производные: \(L''_{xx} = 6x\lambda, L''_{xy} = -6\lambda, L''_{yy} = 6\lambda \), \(\varphi'_x = -6y + 3x^2, \varphi'_y = 3y^2 - 6x \) и составим определитель:
\[
\Delta = \begin{vmatrix}
0 & \varphi'_x(x_0, y_0) & \varphi'_y(x_0, y_0) \\
\varphi'_x(x_0, y_0) & L''_{xx}(x_0, y_0, \lambda_0) & L''_{xy}(x_0, y_0, \lambda_0) \\
\varphi'_y(x_0, y_0) & L''_{yx}(x_0, y_0, \lambda_0) & L''_{yy}(x_0, y_0, \lambda_0)
\end{vmatrix} = -9 - 2 \frac{2}{3} = -432 < 0.
\]

Вывод: функция \(z = x + y - 1 \) имеет в точке \(M(3, 3) \) условный максимум. Значение функции в точке условного максимума \(z_{\text{max}} = 5 \).
1.12. Наибольшее и наименьшее значения функции двух переменных в области

Если функция \(z = f(x, y) \) имеет непрерывные частные производные в ограниченной замкнутой области \(D \), то она достигает своего наибольшего и наименьшего значения или в стационарной, или в граничной точке области \(D \).

Для того, чтобы найти наибольшее и наименьшее значения такой функции, нужно:

1) найти стационарные точки, расположенные внутри области, и вычислить значения функции в этих точках;
2) найти наибольшее и наименьшее значения функции на линиях, образующих границу области;
3) из всех найденных значений выбрать наибольшее и наименьшее.

Если при этом некоторые точки области попадают под анализ несколько раз, значение функции в них вычисляют единожды.

Примеры решения задачи 13.

Пример 13.1. Найти наименьшее и наибольшее значения функции
\[z = x^2 + 2xy - 3y^2 + y \] в ограниченной замкнутой области \(D \), заданной системой неравенств \(x + y \leq 1, \ y \geq 0, \ x \geq 0. \)

Решение.

Область \(D \) представляет собой треугольник, ограниченный координатными осями и прямой \(x + y = 1 \) (см.рис.1.3).

1) Найдем стационарные точки функции; для этого найдем частные производные \(z'_x, \ z'_y \) и приравняем их нулю. Получим систему уравнений:
\[
\begin{align*}
2x - 6y + 1 &= 0, \\
x + y &= 0.
\end{align*}
\]

Решая систему, находим точку \(K\left(-\frac{1}{8}, \frac{1}{8}\right) \). Эта точка не принадлежит области \(D \), следовательно, в области \(D \) стационарных точек нет.

2) Исследуем функцию на границе области. Поскольку граница состоит из трех участков, описываемых тремя различными уравнениями, то будем исследовать функцию на каждом участке отдельно.

- На отрезке \(y = 0, \ 0 \leq x \leq 1 \) исходная функция принимает вид: \(z = x^2 \). Так как эта функция возрастает на отрезке \([0,1]\), то ее наименьшее значение на этом отрезке равно \(z(0,0) = 0 \), а наибольшее равно \(z(1,0) = 1. \)
- На отрезке \(x = 0, \ 0 \leq y \leq 1 \) исходная функция принимает вид \(z = -3y^2 + y \). Найдем производную \(z' = -6y + 1 \). Из уравнения \(-6y + 1 = 0 \) получаем \(y = \frac{1}{6} \) и значение функции в этой точке равно \(\frac{1}{36} \).

Рис.1.3.
получаем \(y = \frac{1}{6} \). Таким образом, наибольшее и наименьшее значения функции
\(z \) на границе \(x = 0 \) находятся среди ее значений в точках \((0,0), (0,1), \left(0, \frac{1}{6}\right) \).
Найдем эти значения: \(z(0,1) = -2, \ z(0, \frac{1}{6}) = \frac{1}{12} \).

- На отрезке \(x + y = 1 \) или \(y = 1 - x, \ 0 \leq x \leq 1 \) исходная функция принимает вид \(z = -4x^2 + 7x - 2 \). Решая уравнение \(z' = -8x + 7 = 0 \), получим \(x = \frac{7}{8} \), следовательно, \(y = 1 - \frac{7}{8} = \frac{1}{8} \). Значение функции в этой точке равно \(z(\frac{7}{8}, \frac{1}{8}) = 1 \frac{1}{16} \), а на концах отрезка \([0,1]\) значения функции найдены выше.

3) Сравнивая полученные значения \(z(0,0) = 0, \ z(1,0) = -2, \ z(0, \frac{1}{6}) = \frac{1}{12}, \ z(\frac{7}{8}, \frac{1}{8}) = 1 \frac{1}{16} \), заключаем, что наибольшее и наименьшее значения функции в замкнутой области \(D \) равны соответственно \(z_{\text{наиб}} = z(\frac{7}{8}, \frac{1}{8}) = 1 \frac{1}{16} \) и \(z_{\text{наим}} = z(0,1) = -2 \).

Пример 13.2. Найти наименьшее и наибольшее значения функции \(z = x + 2y - 3 \) в замкнутой области \(D \), заданной неравенством \(x^2 + y^2 \leq 1 \).

Решение.
Область \(D \) представляет собой круг радиуса 1 с центром в начале координат (см. рис.1.4).

1) Так как частные производные \(z'_x, z'_y \) отличны от нуля во всех точках \((z'_x = 1, \ z'_y = 2) \), то исходная функция не имеет стационарных точек внутри круга.

2) Исследуем функцию на границе круга с помощью условного экстремума. Составляем функцию Лагранжа \(L(x,y,\lambda) = x + 2y - 3 + \lambda(x^2 + y^2 - 1) \). Приравнивая её частные производные к нулю, получим систему уравнений.

\[
\begin{align*}
L'_x &= 1 + 2x\lambda = 0, \\
L'_y &= 2 + 2y\lambda = 0, \\
x^2 + y^2 &= 1.
\end{align*}
\]

Решим полученную систему. Из первого уравнения выражаем \(\lambda = -\frac{1}{2x} \), из второго уравнения выражаем \(\lambda = -\frac{1}{y} \). Приравнивая \(-\frac{1}{2x} = -\frac{1}{y}\), получаем \(y = 2x \). Подставим в третье уравнение \(x^2 + 4x^2 = 1 \Rightarrow x = \pm \frac{1}{\sqrt{5}} \). Таким образом,
имеем две точки $M_1\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$, $M_2\left(\frac{-1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right)$. Найдем значения функции в полученных точках: $z(M_1) = \sqrt{5} - 3$, $z(M_2) = -\sqrt{5} - 3$.

Таким образом, наибольшее значение функции равно $z_{\text{наиб}} = \sqrt{5} - 3$; наименьшее значение функции равно $z_{\text{наим}} = -\sqrt{5} - 3$.

1.13. Метод наименьших квадратов

В различных исследованиях требуется на основании экспериментальных данных установить аналитическую зависимость между двумя переменными величинами x и y. Зачастую установить точно эту зависимость очень трудно, либо вообще невозможно. В таких случаях точную функциональную зависимость аппроксимируют (т.е. приближают) более простой зависимостью, параметры которой найти сравнительно просто. Для решения таких задач обычно используется метод наименьших квадратов.

Итак, пусть в результате эксперимента получено n значений функции y при соответствующих значениях аргумента x. Результаты сведены в таблицу

<table>
<thead>
<tr>
<th>x</th>
<th>x_1</th>
<th>x_2</th>
<th>…</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>y_1</td>
<td>y_2</td>
<td>…</td>
<td>y_n</td>
</tr>
</tbody>
</table>

Вначале устанавливается вид аппроксимирующей функции $y = \varphi(x,a,b,c,...)$. Вид функции устанавливается или из теоретических соображений, или на основании характера расположения на плоскости Oxy точек, соответствующих экспериментальным значениям. Затем подбираются входящие в нее параметры $a,b,c,...$ так, чтобы она наилучшим образом отражала рассматриваемую зависимость.

Метод наименьших квадратов заключается в следующем. Рассмотрим сумму квадратов разностей значений y_i, полученных в результате эксперимента, а также найденных в результате вычисления значений функции $\varphi(x,a,b,c,...)$ в соответствующих точках x_i:

$$S(a,b,c,...) = \sum_{i=1}^{n} [y_i - \varphi(x_i,a,b,c,...)]^2.$$ \hspace{1cm} (1.27)

Подберем параметры $a,b,c,...$ так, чтобы эта сумма имела наименьшее значение. Таким образом, задача свелась к исследованию функции $S(a,b,c,...)$ на экстремум.

Из необходимого условия экстремума функции нескольких переменных следует, что эти значения $a,b,c,...$ удовлетворяют системе уравнений
\[\frac{\partial S}{\partial a} = 0, \quad \frac{\partial S}{\partial b} = 0, \quad \frac{\partial S}{\partial c} = 0, \ldots, \]

или, в развернутом виде,

\[
\begin{cases}
\sum_{i=1}^{n} [y_i - \varphi(x_i, a, b, c, \ldots)] \frac{\partial \varphi(x_i, a, b, c, \ldots)}{\partial a} = 0, \\
\sum_{i=1}^{n} [y_i - \varphi(x_i, a, b, c, \ldots)] \frac{\partial \varphi(x_i, a, b, c, \ldots)}{\partial b} = 0, \\
\sum_{i=1}^{n} [y_i - \varphi(x_i, a, b, c, \ldots)] \frac{\partial \varphi(x_i, a, b, c, \ldots)}{\partial c} = 0, \\
\end{cases}
\]
(1.28)

В случае линейной аппроксимации вида \(y = ax + b \) функция \(S(a, b) \) принимает вид

\[S(a, b) = \sum_{i=1}^{n} [y_i - (ax_i + b)]^2. \]

Это функция с двумя переменными \(a \) и \(b \). Приравнивая к нулю частные производные \(S_a, S_b \), получаем систему уравнений

\[
\begin{cases}
-2 \sum_{i=1}^{n} [y_i - (ax_i + b)]x_i = 0, \\
-2 \sum_{i=1}^{n} [y_i - (ax_i + b)] = 0.
\end{cases}
\]

Данная система перепишется в эквивалентной форме так:

\[
\begin{cases}
a \left(\sum_{i=1}^{n} x_i^2 \right) + b \left(\sum_{i=1}^{n} x_i \right) = \sum_{i=1}^{n} x_i y_i, \\
a \left(\sum_{i=1}^{n} x_i \right) + b \cdot n = \sum_{i=1}^{n} y_i.
\end{cases}
\]
(1.29)

Можно показать, что система (1.29) имеет единственное решение, и при найденных значениях \(a \) и \(b \) функция \(S(a, b) \) имеет минимум.

В случае квадратичной аппроксимации вида \(y = ax^2 + bx + c \) функция (1.27) имеет вид

\[S(a, b, c) = \sum_{i=1}^{n} [y_i - (ax_i^2 + bx_i + c)]^2. \]

Система уравнений (1.28) принимает вид
$$\sum_{i=1}^{n} \left[y_i -(ax_i^2 + bx_i + c) \right] x_i^2 = 0,$$
$$\sum_{i=1}^{n} \left[y_i -(ax_i^2 + bx_i + c) \right] x_i = 0,$$
$$\sum_{i=1}^{n} \left[y_i -(ax_i^2 + bx_i + c) \right] = 0$$

или, в развернутой форме

$$\left\{ \begin{array}{l}
a \sum_{i=1}^{n} x_i^4 + b \sum_{i=1}^{n} x_i^3 + c \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_ix_i, \\
a \sum_{i=1}^{n} x_i^3 + b \sum_{i=1}^{n} x_i^2 + c \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_ix_i, \\
a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i + c \cdot n = \sum_{i=1}^{n} y_i. \end{array} \right. \quad (1.30)$$

Получили систему трех линейных уравнений для определения трех неизвестных a,b,c.

Если требуется найти функцию вида $y = \frac{a}{x^2} + \frac{b}{x} + c$, то формула (1.27) запишется в виде

$$S(a,b,c) = \sum_{i=1}^{n} \left[y_i - \left(\frac{a}{x_i^2} + \frac{b}{x_i} + c \right) \right]^2.$$

Система уравнений (1.28) для определения неизвестных параметров a,b,c примет вид

$$\left\{ \begin{array}{l}
\sum_{i=1}^{n} \left[y_i - \left(\frac{a}{x_i^2} + \frac{b}{x_i} + c \right) \right] \frac{1}{x_i^3} = 0, \\
\sum_{i=1}^{n} \left[y_i - \left(\frac{a}{x_i^2} + \frac{b}{x_i} + c \right) \right] \frac{1}{x_i^2} = 0, \\
\sum_{i=1}^{n} \left[y_i - \left(\frac{a}{x_i^2} + \frac{b}{x_i} + c \right) \right] = 0 \end{array} \right.$$

или, в эквивалентной форме

$$\left\{ \begin{array}{l}
a \sum_{i=1}^{n} \frac{1}{x_i^5} + b \sum_{i=1}^{n} \frac{1}{x_i^4} + c \sum_{i=1}^{n} \frac{1}{x_i^3} = \sum_{i=1}^{n} \frac{y_i}{x_i^3}, \\
a \sum_{i=1}^{n} \frac{1}{x_i^4} + b \sum_{i=1}^{n} \frac{1}{x_i^3} + c \sum_{i=1}^{n} \frac{1}{x_i^2} = \sum_{i=1}^{n} \frac{y_i}{x_i^2}, \\
a \sum_{i=1}^{n} \frac{1}{x_i^2} + b \sum_{i=1}^{n} \frac{1}{x_i^1} + c \cdot n = \sum_{i=1}^{n} y_i. \end{array} \right. \quad (1.31)$$
Пример решения задачи 14.
Экспериментально получены пять значений функции \(y = f(x) \) при пяти значениях аргумента, которые записаны в таблице.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>3</td>
<td>4</td>
<td>2,5</td>
<td>1,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Методом наименьших квадратов найти функцию вида \(y = ax + b \), аппроксимирующую функцию \(y = f(x) \). Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции \(y = ax + b \).

Решение.
Аппроксимирующую функцию ищем в виде \(y = ax + b \). Параметры \(a, b \) находим из системы (1.29). Имеем:

\[
\begin{align*}
 a \left(\sum_{i=1}^{5} x_i^2 \right) + b \left(\sum_{i=1}^{5} x_i \right) &= \sum_{i=1}^{5} x_i y_i, \\
 a \left(\sum_{i=1}^{5} x_i \right) + 5b &= \sum_{i=1}^{5} y_i.
\end{align*}
\]

Вычислим \(\sum_{i=1}^{5} x_i = 1 + 2 + 3 + 4 + 5 = 15 \), \(\sum_{i=1}^{5} x_i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55 \), \(\sum_{i=1}^{5} y_i = 3 + 4 + 2,5 + 1,5 + 0,5 = 11,5 \), \(\sum_{i=1}^{5} x_i y_i = 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 2,5 + 4 \cdot 1,5 + 5 \cdot 0,5 = 27 \).

В итоге система (1.29) примет вид

\[
\begin{align*}
 55a + 15b &= 27, \\
 15a + 5b &= 11,5.
\end{align*}
\]

Решая эту систему, находим: \(a = -0,75 \), \(b = 4,55 \). Уравнение искомой прямой \(y \) имеет вид: \(y = -0,75x + 4,55 \). Строим график.

Примеры решения задачи 15.
Пример 15.1. Экспериментально получены шесть значений функции \(y = f(x) \) при шести значениях аргумента, которые записаны в таблице.
Методом наименьших квадратов найти функцию вида $y = ax^2 + bx + c$, аппроксимирующую функцию $y = f(x)$. Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции $y = ax^2 + bx + c$.

Решение.
Аппроксимирующую функцию ищем в виде $y = ax^2 + bx + c$. Параметры a, b, c находим из системы (1.30):

\[
\begin{align*}
 &a \sum_{i=1}^{6} x_i^4 + b \sum_{i=1}^{6} x_i^3 + c \sum_{i=1}^{6} x_i^2 = \sum_{i=1}^{6} y_i x_i^2, \\
 &a \sum_{i=1}^{6} x_i^3 + b \sum_{i=1}^{6} x_i^2 + c \sum_{i=1}^{6} x_i = \sum_{i=1}^{6} y_i x_i, \\
 &a \sum_{i=1}^{6} x_i^2 + b \sum_{i=1}^{6} x_i + 6c = \sum_{i=1}^{6} y_i.
\end{align*}
\]

Найдем $\sum_{i=1}^{6} x_i = 0 + 1 + 2 + 3 + 4 + 5 = 15$, $\sum_{i=1}^{6} x_i^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$, $\sum_{i=1}^{6} x_i^3 = 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 225$, $\sum_{i=1}^{6} x_i^4 = 0^4 + 1^4 + 2^4 + 3^4 + 4^4 + 5^4 = 979$, $\sum_{i=1}^{6} y_i = 0,7 + 0,5 + 1,5 + 2,0 + 2,5 + 4,3 = 11,5$, $\sum_{i=1}^{6} y_i x_i = 0 \cdot 0,7 + 1 \cdot 0,5 + 2 \cdot 1,5 + 3 \cdot 2,0 + 4 \cdot 2,5 + 5 \cdot 4,3 = 41$, $\sum_{i=1}^{6} y_i x_i^2 = 0 \cdot 0,7 + 1 \cdot 0,5 + 4 \cdot 1,5 + 9 \cdot 2,0 + 16 \cdot 2,5 + 25 \cdot 4,3 = 172$.

В итоге система (1.30) примет вид

\[
\begin{align*}
 979a + 225b + 55c &= 172, \\
 225a + 55b + 15c &= 41, \\
 55a + 15b + 6c &= 11,5.
\end{align*}
\]

Решая эту систему, находим: $a = 0,14$, $b = -0,01$, $c = 0,64$. Искомая функция имеет вид: $y = 0,14x^2 - 0,01x + 0,64$. Строим график.
Пример 15.2. Экспериментально получены пять значений функции $y = f(x)$ для пяти значений аргумента, которые записаны в таблице.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0,8</td>
<td>-0,1</td>
<td>-1,2</td>
<td>-1,3</td>
<td>-1,4</td>
</tr>
</tbody>
</table>

Методом наименьших квадратов найти функцию вида $y = \frac{a}{x^2} + \frac{b}{x} + c$, аппроксимирующую функцию $y = f(x)$. Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции $y = \frac{a}{x^2} + \frac{b}{x} + c$.

Решение. Будем искать аппроксимирующую функцию в виде $y = \frac{a}{x^2} + \frac{b}{x} + c$.

Параметры a, b, c находим из системы (1.31):

\[
\begin{align*}
& a \sum_{i=1}^{5} \frac{1}{x_i^5} + b \sum_{i=1}^{5} \frac{1}{x_i^3} + c \sum_{i=1}^{5} \frac{1}{x_i} = \sum_{i=1}^{5} \frac{y_i}{x_i}, \\
& a \sum_{i=1}^{5} \frac{1}{x_i^4} + b \sum_{i=1}^{5} \frac{1}{x_i^2} + c \sum_{i=1}^{5} \frac{1}{x_i} = \sum_{i=1}^{5} \frac{y_i}{x_i}, \\
& a \sum_{i=1}^{5} \frac{1}{x_i^2} + b \sum_{i=1}^{5} \frac{1}{x_i} + 5c = \sum_{i=1}^{5} y_i.
\end{align*}
\]

Найдем $\sum_{i=1}^{5} \frac{1}{x_i} = 2,283$, $\sum_{i=1}^{5} \frac{1}{x_i^2} = 1,464$, $\sum_{i=1}^{5} \frac{1}{x_i^3} = 1,186$, $\sum_{i=1}^{5} \frac{1}{x_i^4} = 1,08$, $\sum_{i=1}^{5} \frac{1}{x_i^5} = 1,037$, $\sum_{i=1}^{5} y_i = -3,9$, $\sum_{i=1}^{5} \frac{y_i}{x_i^2} = 0,329$, $\sum_{i=1}^{5} \frac{y_i}{x_i^3} = 0,624$.

В итоге система (1.30) примет вид
\[
\begin{align*}
& 1,037a + 1,08b + 1,186c = 0,624, \\
& 1,08a + 1,186b + 1,464c = 0,329, \\
& 1,464a + 2,283b + 5c = -3,9.
\end{align*}
\]
Решая эту систему, находим: \(a = 1,57, \ b = 0,87, \ c = -1,64. \)

Искомая функция имеет вид: \(y = \frac{1,57}{x^2} + \frac{0,87}{x} - 1,64. \) Строим график.

Пример решения задачи 16.
 Из прямоугольного листа жести шириной \(a \) изготовить желоб наибольшего объема, поперечное сечение которого имеет форму равнобедренной трапеции.

Решение. Пусть прямоугольник \(ABCD \) – лист жести шириной \(AD = a \), из которого нужно изготовить желоб (см. рис. 1.5). Для того, чтобы желоб имел наибольший объём, нужно, чтобы площадь его поперечного сечения \(AEFD \) (см. рис. 1.6) была наибольшей.

Пусть \(x = AE \) - ширина боковой стенки желоба. Поскольку длина ломаной \(AEFD \) равна \(a \), то \(EF = a - 2x \). Пусть \(\alpha \) – величина острого угла трапеции \(AEFD \), тогда \(GF = x \sin \alpha, \ GD = x \cos \alpha, \ AD = EF + GD = a - 2x + 2x \cos \alpha \). Если через \(z \) обозначить площадь трапеции \(AEFD \), то

\[
z = \frac{1}{2} (EF + AD) GF = (a - 2x + x \cos \alpha) x \sin \alpha.
\]

Таким образом, требуется найти точку максимума функции

\[
z(x, \alpha) = ax \sin \alpha - 2x^2 \sin \alpha + x^2 \sin \alpha \cos \alpha, \quad 0 < x < \frac{a}{2}, 0 < x < \frac{\pi}{2}.
\]

Найдём частные производные функции и приравняем их к нулю.

\[
z'_x = a \sin \alpha - 4x \sin \alpha + 2x \sin \alpha \cos \alpha = 0,
\]

\[
z'_x = ax \cos \alpha - 2x^2 \cos \alpha + x^2 \cos 2\alpha = 0.
\]
Делим обе части первого уравнения на \(\sin \alpha \neq 0 \), второго уравнения – на \(x \neq 0 \) и учтем, что \(\cos 2\alpha = 2\cos^2 \alpha - 1 \). В итоге получим равносильную систему уравнений

\[
\begin{cases}
a - 4x + 2x \cos \alpha = 0 \\
(a - 2x) \cos \alpha + x(2\cos^2 \alpha - 1) = 0
\end{cases}
\]

Из первого уравнения выразим \(x = \frac{a}{4 - 2\cos \alpha} \) и подставим во второе уравнение

\[
\left(a - \frac{2a}{4 - 2\cos \alpha}\right) \cos \alpha + \frac{a(2\cos^2 \alpha - 1)}{4 - 2\cos \alpha} = 0.
\]

Левую часть уравнения приведём к общему знаменателю, отличному от нуля, и отбросим его. Получим уравнение \(2a \cos \alpha - a = 0 \), из которого \(\cos \alpha = \frac{1}{2} \), т.е. \(\alpha = \frac{\pi}{3} \). Тогда \(x = \frac{a}{3} \). Получили стационарную точку: \(x = \frac{a}{3}, \quad \alpha = \frac{\pi}{3} \).

Проверим эту точку «на экстремальность». Находим вторые производные:

\[

c^2 = -4 \sin \alpha + 2 \sin \alpha \cos \alpha,
\]

\[
\left(a - 2x^2\right) \sin \alpha - 2x^2 \sin 2\alpha, \quad \left(a - 2x\right) \cos \alpha + 2x \cos 2\alpha,
\]

\[
\frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2}
\]

\[
\left(a - \frac{4a}{3}\right) \cos \alpha + \frac{2a}{3} \cos \frac{2\pi}{3} = -\frac{a}{2}, \quad z_{aa} = -\frac{3\sqrt{3}}{2},
\]

\[

\frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2}
\]

\[
\frac{a^2}{3} - 2\frac{a^2}{9} \sin \frac{\pi}{2} - 2\frac{a^2}{9} \sin \frac{2\pi}{3} = -\frac{a^2}{2}.
\]

Тогда,

\[
\left|\begin{array}{cc}
\frac{\pi}{2} & \frac{\pi}{2} \\
\frac{\pi}{2} & \frac{\pi}{2}
\end{array}\right| = \frac{3\sqrt{3}}{2} - \frac{a}{2} > 0.
\]

Значит, при \(x = \frac{a}{3}, \quad \alpha = \frac{\pi}{3} \) функция \(z(x, \alpha) \) достигает своего максимума.
Теоретические вопросы

1. Понятие функции двух и трёх переменных.
2. Понятие функции \(n \) переменных.
3. Определение и свойства предела в точке для функции двух и трёх переменных.
4. Понятие непрерывности в точке и в области для функции двух и трёх переменных.
5. Частные производные функции нескольких переменных и правила их отыскания.
6. Полный дифференциал функции двух и трёх переменных, функции \(n \) переменных.
7. Понятие дифференцируемости функции нескольких переменных; достаточные условия дифференцируемости.
8. Дифференцирование неявно заданных функций.
9. Определение частных и смешанных производных высшего порядка.
10. Дифференциалы второго порядка функций двух и трёх переменных.
11. Формулы Тейлora и Маклорена.
12. Градиент и производная по направлению.
13. Определение точек экстремума функций нескольких переменных.
14. Достаточные условия экстремума функции двух переменных.
15. Достаточные условия экстремума функции трёх переменных.
16. Определение точек условного экстремума функции двух переменных.
17. Методика нахождения наибольшего и наименьшего значений функции двух переменных в ограниченной замкнутой области.
18. Понятие о методе наименьших квадратов.
Расчетные задания

Задача 1. Найти и изобразить области определения следующих функций:

<table>
<thead>
<tr>
<th>№</th>
<th>$z = f(x, y)$</th>
<th>№</th>
<th>$z = f(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$z = \frac{\sqrt{y^2 - 2x + 4}}{2y}$</td>
<td>17</td>
<td>$z = \frac{1}{\sqrt{x^2 + y^2 - 6}} + \frac{1}{\sqrt{x}}$</td>
</tr>
<tr>
<td>2</td>
<td>$z = \ln(9 - y^2 - x^2) + \sqrt{\ln x}$</td>
<td>18</td>
<td>$z = \arccos(x + y)$</td>
</tr>
<tr>
<td>3</td>
<td>$z = \frac{1}{\sqrt{x + y}} + \sqrt{x - y}$</td>
<td>19</td>
<td>$z = \sqrt{4 - x^2 + y}$</td>
</tr>
<tr>
<td>4</td>
<td>$z = \frac{e^{\sqrt{x^2 + y^2 - 1}}}{\sqrt{x + y}}$</td>
<td>20</td>
<td>$z = \sqrt{\ln(x^2 + y^2)}$</td>
</tr>
<tr>
<td>5</td>
<td>$z = \ln y + \ln (\sin x)$</td>
<td>21</td>
<td>$z = \sqrt{xy} + \sqrt{x - y}$</td>
</tr>
<tr>
<td>6</td>
<td>$z = \arcsin(x - y)$</td>
<td>22</td>
<td>$z = \frac{\ln(y - 1)}{\sqrt{x^2 + y^2 - 4}}$</td>
</tr>
<tr>
<td>7</td>
<td>$z = \sqrt{y^2 - x^2}$</td>
<td>23</td>
<td>$z = e^{\sqrt{x^2 - y^2}}$</td>
</tr>
<tr>
<td>8</td>
<td>$z = \ln x + \ln (\cos y)$</td>
<td>24</td>
<td>$z = \ln \left(4 - y^2 - x^2\right) + \sqrt{x}$</td>
</tr>
<tr>
<td>9</td>
<td>$z = \frac{\ln x}{\sqrt{x^2 + y^2 - 6}}$</td>
<td>25</td>
<td>$z = \frac{\ln(2x^2 - y + 6)}{\sqrt{x}}$</td>
</tr>
<tr>
<td>10</td>
<td>$z = \ln(\sqrt{9 - y^2 - x^2} + \sqrt{xy})$</td>
<td>26</td>
<td>$z = \sqrt{2x^2 - y^2}$</td>
</tr>
<tr>
<td>11</td>
<td>$z = \arcsin(2x - y)$</td>
<td>27</td>
<td>$z = \arcsin(2x - y)$</td>
</tr>
<tr>
<td>12</td>
<td>$z = \arccos(x + 2y)$</td>
<td>28</td>
<td>$z = \ln x + \ln (\sin y)$</td>
</tr>
<tr>
<td>13</td>
<td>$z = \frac{\ln 2x}{\sqrt{x^2 + y^2 - 25}}$</td>
<td>29</td>
<td>$z = \ln \left(x - \sqrt{x^2 - y^2}\right)$</td>
</tr>
<tr>
<td>14</td>
<td>$z = \ln(y^2 - 3x + 6)$</td>
<td>30</td>
<td>$z = \ln \left(x^3 - y^3\right) - \ln (x - y)$</td>
</tr>
<tr>
<td>15</td>
<td>$z = \ln(\sqrt{x^2 + y^2} - 3) + \sqrt{\ln y}$</td>
<td>31</td>
<td>$z = \ln \left(x^2 - y^2\right) - \ln (x + y)$</td>
</tr>
<tr>
<td>16</td>
<td>$z = \frac{\ln y}{\sqrt{2 - x^2 - y^2}}$</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Задача 2. Проверить, удовлетворяет ли функция $z = f(x, y)$ данному уравнению

<table>
<thead>
<tr>
<th>№</th>
<th>$z = f(x, y)$</th>
<th>уравнение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$z = \ln \left(x^2 + xy + y^2\right)$</td>
<td>$(z_x)^2 - (z_y)^2 = z_{yy}^* - z_{xx}^*$</td>
</tr>
<tr>
<td>№</td>
<td>(z = f(x, y))</td>
<td>уравнение</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>2</td>
<td>(z = e^{xy})</td>
<td>(x^2z''{xx} - y^2z''{yy} = 0)</td>
</tr>
<tr>
<td>3</td>
<td>(z = x^{y^2})</td>
<td>(z''_{yy} - \frac{1}{y}z_y = \frac{(z'_y)^2}{y})</td>
</tr>
<tr>
<td>4</td>
<td>(z = \sqrt[3]{\frac{y}{x}})</td>
<td>(yz''{yy} - xz''{xy} = 0)</td>
</tr>
<tr>
<td>5</td>
<td>(z = \sin(x - 3y))</td>
<td>(z''{yy} - 9z''{xx} = 0)</td>
</tr>
<tr>
<td>6</td>
<td>(z = \frac{x}{x^2 + y^2})</td>
<td>(z''{xx} + z''{yy} = 0)</td>
</tr>
<tr>
<td>7</td>
<td>(z = \ln(y + e^{-y}))</td>
<td>(z'xz''{xy} - z'yz''{xx} = 0)</td>
</tr>
<tr>
<td>8</td>
<td>(z = \sqrt{x^2 + y^2})</td>
<td>(z'_y \cdot z'x + z \cdot z''{xy} = 0)</td>
</tr>
<tr>
<td>9</td>
<td>(z = e^{x^2 + y^2})</td>
<td>(\frac{z'_x \cdot z'_y}{z} + z = z'')</td>
</tr>
<tr>
<td>10</td>
<td>(z = \cos(x + y^2))</td>
<td>(z''{yy} - 2z''{xx} = 2y \cdot z''_{xy})</td>
</tr>
<tr>
<td>11</td>
<td>(z = \sin^2(y - 3x))</td>
<td>(9z''{yy} = z''{xx})</td>
</tr>
<tr>
<td>12</td>
<td>(z = \arctg\left(\frac{x}{y}\right))</td>
<td>(z''{xx} + z''{yy} = 0)</td>
</tr>
<tr>
<td>13</td>
<td>(z = (y - x) \sin y + \cos x)</td>
<td>((x - y)z''_{xy} - z'_y = 0)</td>
</tr>
<tr>
<td>14</td>
<td>(z = \frac{y}{x})</td>
<td>(x^2z''{xx} + 2xyz''{xy} + y^2z''_{yy} = 0)</td>
</tr>
<tr>
<td>15</td>
<td>(z = y \sqrt[3]{\frac{y}{x}})</td>
<td>(x^2z''{xx} - y^2z''{yy} = 0)</td>
</tr>
<tr>
<td>16</td>
<td>(z = \frac{y}{\left(x^2 - y^2\right)^{\frac{5}{2}}})</td>
<td>(\frac{1}{x}z'_x + \frac{1}{y}z'_y - \frac{z}{y^2} = 0)</td>
</tr>
<tr>
<td>17</td>
<td>(z = e^{xy})</td>
<td>(x^2z''{xx} - 2xyz''{xy} + y^2z''_{yy} + 2xyz = 0)</td>
</tr>
<tr>
<td>18</td>
<td>(z = \arcsin(xy))</td>
<td>(z''{xx} + z''{yy} = xy(x^2 + y^2)z''_{xy})</td>
</tr>
<tr>
<td>19</td>
<td>(z = \tan\left(\frac{x}{y}\right))</td>
<td>(z''{xy} + \frac{x}{y}z''{xx} = 0)</td>
</tr>
<tr>
<td>20</td>
<td>(z = \sin(x + 7y))</td>
<td>(z''{yy} - 49z''{xx} = 0)</td>
</tr>
<tr>
<td>21</td>
<td>(z = \ln\left(e^x + e^y\right))</td>
<td>(z''{xx} + 2z''{xy} + z''_{yy} = 0)</td>
</tr>
<tr>
<td>22</td>
<td>(z = x \sin y + y \cos x)</td>
<td>(z''{xx} + z''{yy} + z = 0)</td>
</tr>
</tbody>
</table>
Задача 3. Найти производные сложной функции.

<table>
<thead>
<tr>
<th>№</th>
<th>$z = f(x, y)$</th>
<th>уравнение</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>$z = xe^{xy}$</td>
<td>$x^2 z''{xx} + 2xyz''{xy} + y^2 z''_{yy} = 0$</td>
</tr>
<tr>
<td>24</td>
<td>$z = y^x$</td>
<td>$x \cdot z'x + z = y \cdot z''{xy}$</td>
</tr>
<tr>
<td>25</td>
<td>$z = \ln \left(x^2 + y^2 + 2x + 1 \right)$</td>
<td>$z''{xx} + z''{yy} = 0$</td>
</tr>
<tr>
<td>26</td>
<td>$z = \sin \frac{x}{\cos y}$</td>
<td>$z'_x \cdot z'y = z \cdot z''{xy}$</td>
</tr>
<tr>
<td>27</td>
<td>$z = \frac{x}{y}$</td>
<td>$xz''_{xy} - z'_y = 0$</td>
</tr>
<tr>
<td>28</td>
<td>$z = \arccos \sqrt{\frac{x}{y}}$</td>
<td>$z''{xy} = z''{yx}$</td>
</tr>
<tr>
<td>29</td>
<td>$z = \arctg xy$</td>
<td>$x^2 z''{xx} - y^2 z''{yy} = 0$</td>
</tr>
<tr>
<td>30</td>
<td>$z = e^{x^2 - y^2} \cdot \cos 2xy$</td>
<td>$z''{xx} + z''{yy} = 0$</td>
</tr>
<tr>
<td>31</td>
<td>$z = \ln \left(x^2 - y^2 \right)$</td>
<td>$z''{xx} - z''{yy} = 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>№</th>
<th>$u(x, y)$</th>
<th>производные</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$u = \ln \left(x^2 + xy + y^2 \right)$, $y = \frac{1}{3} x^3 + x$</td>
<td>$\frac{\partial u}{\partial x}$, $\frac{du}{dx}$, $-?$</td>
</tr>
<tr>
<td>2</td>
<td>$u = \arcsin \left(\frac{x}{y}\right)$, $x = \sin t$, $y = \cos t$</td>
<td>$\frac{du}{dt}$, $-?$</td>
</tr>
<tr>
<td>3</td>
<td>$u = x^y + y^x$, $x = v^2 + w^2$, $y = w^2 - v^2$</td>
<td>$\frac{\partial u}{\partial w}$, $\frac{\partial u}{\partial v}$, $-?$</td>
</tr>
<tr>
<td>4</td>
<td>$u = x^2z + y^3 + yz^3$, $x = t^2 + 1$, $y = t^3$, $z = 4 - t^4$</td>
<td>$\frac{du}{dt}$, $-?$</td>
</tr>
<tr>
<td>5</td>
<td>$u = \frac{v}{w} + \frac{w}{v}$, $w = y \sin x$, $v = x \cos y$</td>
<td>$\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $-?$</td>
</tr>
<tr>
<td>6</td>
<td>$u = \arctg \left(\frac{x+1}{y}\right)$, $x = e^{2t}$, $y = \ln(2t+1)$</td>
<td>$\frac{du}{dt}$, $-?$</td>
</tr>
<tr>
<td>7</td>
<td>$u = e^x \ln \left(x^2 + y^2 \right)$, $y = \frac{1}{2} x^2 + x$</td>
<td>$\frac{\partial u}{\partial x}$, $\frac{du}{dx}$, $-?$</td>
</tr>
<tr>
<td>8</td>
<td>$u = \sqrt{v - w + \ln(v^2 + w)}$, $w = y e^x$, $v = x e^y$</td>
<td>$\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $-?$</td>
</tr>
</tbody>
</table>

40
<table>
<thead>
<tr>
<th>№</th>
<th>(u(x, y))</th>
<th>производные</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(u = xz^3 + x^2y^2 + y^3z, \ x = t^{-2}, \ y = t^3, \ z = t^{-4})</td>
<td>(\frac{du}{dt}) -?</td>
</tr>
<tr>
<td>10</td>
<td>(u = \frac{e^{xy}}{\sqrt{x+y}}, \ x = v\cos w, \ y = w\sin v)</td>
<td>(\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v}) -?</td>
</tr>
<tr>
<td>11</td>
<td>(u = \frac{x^2 + xy}{1+y}, \ y = x\cos x)</td>
<td>(\frac{\partial u}{\partial x}, \frac{du}{dx})</td>
</tr>
<tr>
<td>12</td>
<td>(u = y^2 \tan(x), \ x = e^t \sin t, \ y = e^t \cos t)</td>
<td>(\frac{du}{dt}) -?</td>
</tr>
<tr>
<td>13</td>
<td>(u = \frac{v}{w^2} + 2w, \ w = \sqrt{y} x, \ v = y\cos x)</td>
<td>(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}) -?</td>
</tr>
<tr>
<td>14</td>
<td>(u = \frac{e^y + e^x}{x^2}, \ y = x\ln x)</td>
<td>(\frac{\partial u}{\partial x}, \frac{du}{dx}) -?</td>
</tr>
<tr>
<td>15</td>
<td>(u = x\arctg(xy), \ x = e^t + 1, \ y = t^3)</td>
<td>(\frac{du}{dt}) -?</td>
</tr>
<tr>
<td>16</td>
<td>(u = \frac{e^{xy}}{\sqrt{x+y}}, \ x = v\cos w, \ y = w\sin v)</td>
<td>(\frac{\partial u}{\partial w}, \frac{\partial u}{\partial x}) -?</td>
</tr>
<tr>
<td>17</td>
<td>(u = \frac{x^2 + y^2}{\sqrt{xy}}, \ y = x\tan x)</td>
<td>(\frac{\partial u}{\partial x}, \frac{du}{dx}) -?</td>
</tr>
<tr>
<td>18</td>
<td>(u = x^2y^3 + xz^3, \ x = t^2 + 1, \ y = t^3, \ z = \sin t)</td>
<td>(\frac{du}{dt}) -?</td>
</tr>
<tr>
<td>19</td>
<td>(u = \frac{\arcsin \frac{v}{w^2}}{w^2}, \ w = \frac{1}{5} x^5 + \frac{1}{7} y^7, \ v = \ln(xy))</td>
<td>(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}) -?</td>
</tr>
<tr>
<td>20</td>
<td>(u = e^{xy}\sqrt{y}, \ x = \ln(w), \ y = w\sin v)</td>
<td>(\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v}) -?</td>
</tr>
<tr>
<td>21</td>
<td>(u = \frac{xy - 2y^2}{\sqrt{1+y}}, \ y = xe^x)</td>
<td>(\frac{\partial u}{\partial x}, \frac{du}{dx}) -?</td>
</tr>
<tr>
<td>22</td>
<td>(u = \arccos \left(\frac{2x}{y} \right), \ x = \sin t, \ y = \cos t)</td>
<td>(\frac{du}{dt}) -?</td>
</tr>
<tr>
<td>23</td>
<td>(u = \tan(xy), \ x = \ln \left(w^2 + v^2 \right), \ y = \frac{w^2}{v^2})</td>
<td>(\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v}) -?</td>
</tr>
<tr>
<td>24</td>
<td>(u = \frac{v+2w}{w^3}, \ w = x^5 + y^7 - 2, \ v = \cos(xy))</td>
<td>(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}) -?</td>
</tr>
<tr>
<td>25</td>
<td>(u = \ln \left(e^x + e^{-y} \right), \ y = \frac{1}{3} x^3 + x)</td>
<td>(\frac{\partial u}{\partial x}, \frac{du}{dx}) -?</td>
</tr>
</tbody>
</table>
Задача 4. Найти первые производные неявной функции.

<table>
<thead>
<tr>
<th>№</th>
<th>функц</th>
<th>№</th>
<th>функц</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sin(x^3 y + y^3) + 2x = 5.$</td>
<td>17</td>
<td>$xe^{2y} - y \ln x = 7$</td>
</tr>
<tr>
<td>2</td>
<td>$x^2 - y^2 - z^2 = \cos z.$</td>
<td>18</td>
<td>$\cos^2 x + \cos^2 y + \cos^2 z = 1$</td>
</tr>
<tr>
<td>3</td>
<td>$e^{xy} + 2yz = x^2 + y^2$</td>
<td>19</td>
<td>$x^2 y^3 - 2x^2 - 3y + 5xy^5 = 0$</td>
</tr>
<tr>
<td>4</td>
<td>$x^2 y^3 + xz^3 + y^2 = 0$</td>
<td>20</td>
<td>$xz^5 + y^3 z - x^3 = 0$</td>
</tr>
<tr>
<td>5</td>
<td>$\ln\left(x^2 + y^2\right) = \arctg(xy)$</td>
<td>21</td>
<td>$x^y = y^x$</td>
</tr>
<tr>
<td>6</td>
<td>$3x^2 z + z^3 = 2xy$</td>
<td>22</td>
<td>$x^2 + y^2 + z^2 = \sin z$</td>
</tr>
<tr>
<td>7</td>
<td>$xe^y + ye^x = 2$</td>
<td>23</td>
<td>$\tg(x + y) - 2x^2 y^3 = 1$</td>
</tr>
<tr>
<td>8</td>
<td>$x^2 + y^2 + z^2 + 2x + 3z = 1$</td>
<td>24</td>
<td>$xyz + z^3 = 7x$</td>
</tr>
<tr>
<td>9</td>
<td>$x^4 y^2 + 2x^2 y^2 + 3x^2 y^4 = 2$</td>
<td>25</td>
<td>$\arctg(xy) = \frac{x}{y}$</td>
</tr>
<tr>
<td>10</td>
<td>$2(x + y + z) = e^{x+y+z} - 1$</td>
<td>26</td>
<td>$x + y + z + \arctg z = 0$</td>
</tr>
<tr>
<td>11</td>
<td>$\cos\left(\frac{x}{y}\right) = xy$</td>
<td>27</td>
<td>$\cos(x^2 y + y^2) + 2x = 2$</td>
</tr>
<tr>
<td>12</td>
<td>$xyz + 5z^2 = 2x$</td>
<td>28</td>
<td>$2x^2 y^3 + xz^3 + y^2 z = 0$</td>
</tr>
<tr>
<td>13</td>
<td>$x^2 y - y^2 z + xe^z = 0$</td>
<td>29</td>
<td>$\ln(x^2 - y^2) = \tg(xz)$</td>
</tr>
<tr>
<td>№</td>
<td>функция</td>
<td>№</td>
<td>функция</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>$x^2 \ln y - y^2 \ln x = 0$</td>
<td>30</td>
<td>$\sin(xy) = \frac{x}{y}$</td>
</tr>
<tr>
<td>15</td>
<td>$z = x + y^2 \tan z$</td>
<td>31</td>
<td>$\arctg\left(\frac{x}{y}\right) = xy$</td>
</tr>
<tr>
<td>16</td>
<td>$5z - \ln(x^2 + y^2) = 2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Задача 5. Найти дифференциалы n-го порядка $(d^n u)$ следующих функций (x, y, z – независимые переменные).

<table>
<thead>
<tr>
<th>№</th>
<th>функция</th>
<th>№</th>
<th>функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$u = e^y \cos x$, $n = 3.$</td>
<td>17</td>
<td>$u = \ln \sin \frac{y}{x}$, $n = 3.$</td>
</tr>
<tr>
<td>2</td>
<td>$u = x^3 + y^3 + z^3 + 2xyz$, $n = 2.$</td>
<td>18</td>
<td>$u = x^3 y + y^3 z + z^3 x$, $n = 2.$</td>
</tr>
<tr>
<td>3</td>
<td>$u = \frac{x}{y} + \frac{y}{x}$, $n = 3.$</td>
<td>19</td>
<td>$u = \ln 2x \cdot \ln 3y$, $n = 3.$</td>
</tr>
<tr>
<td>4</td>
<td>$u = e^{x-2y+3z}$, $n = 2.$</td>
<td>20</td>
<td>$u = e^{4x+2y-5z}$, $n = 2.$</td>
</tr>
<tr>
<td>5</td>
<td>$u = \sin(2x)\cos(3y)$, $n = 3.$</td>
<td>21</td>
<td>$u = \frac{x}{y^2} + y \sin x$, $n = 3.$</td>
</tr>
<tr>
<td>6</td>
<td>$u = \ln(x + y + z)$, $n = 2.$</td>
<td>22</td>
<td>$u = \frac{z}{y} + \frac{y}{z} + \frac{x}{y}$, $n = 2.$</td>
</tr>
<tr>
<td>7</td>
<td>$u = x^3 y^5 + 3\ln x + 5\ln y$, $n = 3.$</td>
<td>23</td>
<td>$u = \sqrt{2x + 3y}$, $n = 3.$</td>
</tr>
<tr>
<td>8</td>
<td>$u = e^{xyz}$, $n = 2.$</td>
<td>24</td>
<td>$u = \ln(3x + 2y + z)$, $n = 2.$</td>
</tr>
<tr>
<td>9</td>
<td>$u = x^{3/5} + \sin^2 y$, $n = 3.$</td>
<td>25</td>
<td>$u = e^x \sin y$, $n = 3.$</td>
</tr>
<tr>
<td>10</td>
<td>$u = x^2 y + y^2 z + z^2 x$, $n = 2.$</td>
<td>26</td>
<td>$u = \cos(xyz)$, $n = 2.$</td>
</tr>
<tr>
<td>11</td>
<td>$u = \ln \cos \frac{x}{y}$, $n = 3.$</td>
<td>27</td>
<td>$u = \sqrt{3x + 2y}$, $n = 3.$</td>
</tr>
<tr>
<td>12</td>
<td>$u = e^{-2x+3y-4z}$, $n = 2.$</td>
<td>28</td>
<td>$u = \frac{x^2}{x^2} + \frac{y^2}{x^2} + \frac{z^2}{x^2}$, $n = 2.$</td>
</tr>
<tr>
<td>13</td>
<td>$u = y^2 - 3\cos^2 x$, $n = 3.$</td>
<td>29</td>
<td>$u = e^{x^2-y^2}$, $n = 3.$</td>
</tr>
<tr>
<td>14</td>
<td>$u = \frac{x + y + z}{y}$, $n = 2.$</td>
<td>30</td>
<td>$u = \ln(\sin x + \cos y)$, $n = 2.$</td>
</tr>
<tr>
<td>15</td>
<td>$u = xy^{1/5} + \frac{1}{x}$, $n = 3.$</td>
<td>31</td>
<td>$u = \ln \sqrt{x^2 - y^2}$, $n = 3.$</td>
</tr>
<tr>
<td>16</td>
<td>$u = x^2 + y^2 + z^2 + (xyz)^2$, $n = 2.$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Задача 6. Вычислить приближенное значение функции \(z(x, y) \) в точке \(A \).

<table>
<thead>
<tr>
<th>№</th>
<th>(f(x, y))</th>
<th>координаты точки (A)</th>
<th>№</th>
<th>(f(x, y))</th>
<th>координаты точки (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(3\sqrt{2x^2 - 3xy})</td>
<td>(3,94; 2,01)</td>
<td>17</td>
<td>(2y + \arctg(xy))</td>
<td>(0,01; 2,95)</td>
</tr>
<tr>
<td>2</td>
<td>(5 + 2xy - x^2)</td>
<td>(1,98; 3,92)</td>
<td>18</td>
<td>(2x^2 + \cos(xy) + 5y)</td>
<td>(1,99; 0,02)</td>
</tr>
<tr>
<td>3</td>
<td>(\ln(2x^2 + 2y^2))</td>
<td>(0,48; 0,54)</td>
<td>19</td>
<td>(x^2 + xy + y^2)</td>
<td>(1,02; 1,96)</td>
</tr>
<tr>
<td>4</td>
<td>(3x^2 - xy + x + y)</td>
<td>(1,06; 2,92)</td>
<td>20</td>
<td>(\sqrt{2x^2 + 6y})</td>
<td>(0,97; 0,98)</td>
</tr>
<tr>
<td>5</td>
<td>(\sqrt{x + 7y})</td>
<td>(1,94; 1,03)</td>
<td>21</td>
<td>(x^2 - y^2 + 5x + 4y)</td>
<td>(3,05; 1,98)</td>
</tr>
<tr>
<td>6</td>
<td>(e^{4x^2 - y^2})</td>
<td>(0,98; 2,03)</td>
<td>22</td>
<td>(e^{2x^2 + y^2 - 3xy})</td>
<td>(0,98; 2,03)</td>
</tr>
<tr>
<td>7</td>
<td>(x^2 + 2y \sin(xy))</td>
<td>(0,05; 1,96)</td>
<td>23</td>
<td>(x^2 + 2xy + 3y^2)</td>
<td>(1,96; 1,04)</td>
</tr>
<tr>
<td>8</td>
<td>(\ln(3x^2 - 2xy))</td>
<td>(1,03; 0,98)</td>
<td>24</td>
<td>(2y + \sin\left(\frac{x}{y}\right))</td>
<td>(0,05; 4,98)</td>
</tr>
<tr>
<td>9</td>
<td>(x^2 + 3xy - 6y)</td>
<td>(3,96; 1,03)</td>
<td>25</td>
<td>(2xy + 3y^2 - 5x)</td>
<td>(3,04; 3,95)</td>
</tr>
<tr>
<td>10</td>
<td>(\arcsin(y^2) + 10x^2)</td>
<td>(3,99; 0,01)</td>
<td>26</td>
<td>(x^2 + y^2 + 2\sin(xy))</td>
<td>(0,04; 2,97)</td>
</tr>
<tr>
<td>11</td>
<td>(e^{x^2 - 2xy})</td>
<td>(0,05; 2,97)</td>
<td>27</td>
<td>(e^y \ln(x + 2y))</td>
<td>(0,98; 0,03)</td>
</tr>
<tr>
<td>12</td>
<td>(x^2 - y^2 + 6x + 3y)</td>
<td>(2,02; 2,97)</td>
<td>28</td>
<td>(xy + 2y^2 - 2x)</td>
<td>(0,97; 2,03)</td>
</tr>
<tr>
<td>13</td>
<td>(\sqrt{x^3 + y^2 + xy})</td>
<td>(2,06; 1,96)</td>
<td>29</td>
<td>(\arctg\left(\frac{x}{y}\right))</td>
<td>(0,02; 3,98)</td>
</tr>
<tr>
<td>14</td>
<td>(2 + \arcsin\left(\frac{x}{y}\right))</td>
<td>(0,04; 3,96)</td>
<td>30</td>
<td>(e^{x^2 - 4y^2})</td>
<td>(1,95; -1,05)</td>
</tr>
<tr>
<td>15</td>
<td>(3x^2 + 2y^2 - xy)</td>
<td>(0,98; 2,97)</td>
<td>31</td>
<td>(\sin\left(\frac{x}{y}\right))</td>
<td>(-0,04; 2,05)</td>
</tr>
<tr>
<td>16</td>
<td>(x^2 + y^2 + 2x + y - 1)</td>
<td>(1,98; 3,91)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Задача 7. Разложить функцию \(f(x, y) \) по формуле Тейлора в точке \(M \), ограничиваясь членами второго порядка включительно

<table>
<thead>
<tr>
<th>№</th>
<th>(f(x, y))</th>
<th>(M)</th>
<th>№</th>
<th>(f(x, y))</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\sin x \cos y)</td>
<td>(\left(\frac{\pi}{4}, \frac{\pi}{4}\right))</td>
<td>11</td>
<td>(e^x \cos y)</td>
<td>((0, \pi))</td>
</tr>
</tbody>
</table>
Разложить функцию \(f(x, y) \) по формуле Тейлора в точке \(M \)

<table>
<thead>
<tr>
<th>№</th>
<th>(f(x, y))</th>
<th>(M)</th>
<th>№</th>
<th>(f(x, y))</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(e^{x+2y})</td>
<td>((4, -2))</td>
<td>11</td>
<td>(\cos x \sin y)</td>
<td>(\left(\frac{\pi}{4}, \frac{\pi}{4}\right))</td>
</tr>
<tr>
<td>2</td>
<td>(x^y)</td>
<td>((1, 1))</td>
<td>12</td>
<td>(e^y \ln (2x + 1))</td>
<td>((0, 0))</td>
</tr>
<tr>
<td>3</td>
<td>(\ln \left(x^3 + y^2\right))</td>
<td>((1, 0))</td>
<td>13</td>
<td>(\sin x \ln(1 - y))</td>
<td>(\left(\frac{\pi}{2}, 0\right))</td>
</tr>
<tr>
<td>4</td>
<td>(\sqrt{2x + y})</td>
<td>((4, 1))</td>
<td>14</td>
<td>(e^y \sin x)</td>
<td>(\left(\frac{\pi}{2}, 0\right))</td>
</tr>
<tr>
<td>5</td>
<td>(e^{xy})</td>
<td>((0, 1))</td>
<td>15</td>
<td>(\cos x \cos y)</td>
<td>(\left(\frac{\pi}{4}, \frac{\pi}{4}\right))</td>
</tr>
<tr>
<td>6</td>
<td>(\sin x \sin y)</td>
<td>(\left(\frac{\pi}{4}, \frac{\pi}{4}\right))</td>
<td>16</td>
<td>(e^x \ln (y + 1))</td>
<td>((0, 0))</td>
</tr>
<tr>
<td>7</td>
<td>(\ln(2x - y))</td>
<td>((2, 3))</td>
<td>17</td>
<td>(\cos y \ln(1 + x))</td>
<td>((0, 0))</td>
</tr>
<tr>
<td>8</td>
<td>(\sqrt{3x - 2y})</td>
<td>((2, 1))</td>
<td>18</td>
<td>(e^y \cos x)</td>
<td>((0, 0))</td>
</tr>
<tr>
<td>9</td>
<td>(\sin x \sin y)</td>
<td>(\left(\frac{\pi}{4}, \frac{\pi}{4}\right))</td>
<td>19</td>
<td>(\frac{\partial}{\partial x} \left(\frac{x^2}{y^2}\right))</td>
<td>(\left(\frac{\pi}{4}, \frac{\pi}{4}\right))</td>
</tr>
<tr>
<td>10</td>
<td>(\frac{\sin x}{\sin y})</td>
<td>(\left(\frac{\pi}{4}, \frac{\pi}{4}\right))</td>
<td>20</td>
<td>(-xy^2 + 5x + 4y)</td>
<td>((-1, 2))</td>
</tr>
<tr>
<td>21</td>
<td>(x^2 + y^2 + 2x + y - 1)</td>
<td>((3, -2))</td>
<td>22</td>
<td>(x^2 - y^2 + 5x + 4y)</td>
<td>((1, 1))</td>
</tr>
<tr>
<td>23</td>
<td>(x^2 + 2xy + 3y^2)</td>
<td>((1, -1))</td>
<td>24</td>
<td>(xy + 2y^2 - 2x)</td>
<td>((4, 1))</td>
</tr>
<tr>
<td>25</td>
<td>(3x^2 - xy + x + y)</td>
<td>((-1, 3))</td>
<td>26</td>
<td>(x^2 - y^2 + 6x + 3y)</td>
<td>((1, -2))</td>
</tr>
<tr>
<td>27</td>
<td>(x^2 - y^2 + 5x + 4y)</td>
<td>((1, 1))</td>
<td>28</td>
<td>(3x^2 + 2y^2 - xy)</td>
<td>((2, 1))</td>
</tr>
<tr>
<td>29</td>
<td>(x^2 - xy + 2y^2)</td>
<td>((1, -1))</td>
<td>30</td>
<td>(x^2 + xy - 3y^2)</td>
<td>((-1, 2))</td>
</tr>
<tr>
<td>31</td>
<td>(2x^2 - 3xy + y^2)</td>
<td>((-3, 1))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Задача 8. Составить уравнения касательной плоскости и нормали к указанной поверхности в точке A.

<table>
<thead>
<tr>
<th>№</th>
<th>уравнение поверхности</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$xy^2 + z^3 = 12$</td>
<td>(1; 2; 2)</td>
</tr>
<tr>
<td>2</td>
<td>$z = 3x^2 - xy + x + y$</td>
<td>(1; 3; 4)</td>
</tr>
<tr>
<td>3</td>
<td>$3xyz - z^3 = 8$</td>
<td>(0; 2; -2)</td>
</tr>
<tr>
<td>4</td>
<td>$z = x^2 + 3xy - 6y$</td>
<td>(4; 1; 22)</td>
</tr>
<tr>
<td>5</td>
<td>$z = \ln(x^2 - 2y^2)$</td>
<td>(3; 2; 0)</td>
</tr>
<tr>
<td>6</td>
<td>$x^2 + y^2 - z^2 = -1$</td>
<td>(2; 2; 3)</td>
</tr>
<tr>
<td>7</td>
<td>$z = x^2 - y^2 + 6x + 3y$</td>
<td>(2; 3; 16)</td>
</tr>
<tr>
<td>8</td>
<td>$x^2y + 2x + z^3 = 5$</td>
<td>(1; 2; 1)</td>
</tr>
<tr>
<td>9</td>
<td>$2x^2 + 2y^2 + z^2 + 8xz - z = -8$</td>
<td>(-2; 0; 1)</td>
</tr>
<tr>
<td>10</td>
<td>$z = x^2 - y^2 + 5x + 4y$</td>
<td>(3; 2; 28)</td>
</tr>
<tr>
<td>11</td>
<td>$x^2 - xy - 8x + z^3 = 2$</td>
<td>(2; -3; 2)</td>
</tr>
<tr>
<td>12</td>
<td>$z = x^2 + 2xy + 3y^2$</td>
<td>(2; 1; 11)</td>
</tr>
<tr>
<td>13</td>
<td>$3x^2 - 4xy + 12xz - 3yz + z^2 + 15 = 0$</td>
<td>(-1; -1; 2)</td>
</tr>
<tr>
<td>14</td>
<td>$z = \ln(x^2 + y^2)$</td>
<td>(1; 0; 0)</td>
</tr>
<tr>
<td>15</td>
<td>$x^4 + y^4 + z^4 = 3$</td>
<td>(1; 1; 1)</td>
</tr>
<tr>
<td>16</td>
<td>$z = 3x^2 + 2y^2 - xy$</td>
<td>(-1; 3; 24)</td>
</tr>
<tr>
<td>17</td>
<td>$6xy - 2x^2 - xy^2 - z^2 = -3$</td>
<td>(1; 2; 3)</td>
</tr>
<tr>
<td>18</td>
<td>$x^3 + y^3 - 3z^3 = 13$</td>
<td>(2; 2; 1)</td>
</tr>
<tr>
<td>19</td>
<td>$z = x^2 + y^2 + 2x + y - 1$</td>
<td>(2; 3; 19)</td>
</tr>
<tr>
<td>20</td>
<td>$xy + e^{xz} = 0$</td>
<td>(5; -1/5; 0)</td>
</tr>
<tr>
<td>21</td>
<td>$z = \ln(5x^2 - y^2)$</td>
<td>(1; 2; 0)</td>
</tr>
<tr>
<td>22</td>
<td>$z = xy + 2y^2 - 2x$</td>
<td>(1; 2; 8)</td>
</tr>
<tr>
<td>23</td>
<td>$x^3 + y^3 + z^3 + xyz = 6$</td>
<td>(1; 2; -1)</td>
</tr>
<tr>
<td>24</td>
<td>$x^4 + 2y^3 + 3z^3 = 20$</td>
<td>(1; 2; 1)</td>
</tr>
<tr>
<td>25</td>
<td>$z = x^2 + xy + y^2$</td>
<td>(1; 2; 7)</td>
</tr>
</tbody>
</table>
Задача 9. Дана функция $z(x, y)$, точка $A(x_0, y_0)$ и вектор $a(x_1, y_1)$. Найти: 1) $\grad z$ в точке A; 2) производную в точке A по направлению вектора a.

<table>
<thead>
<tr>
<th>№</th>
<th>уравнение поверхности</th>
<th>A</th>
<th>\vec{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>$x^2 - xy + xz + 3yz + 2z^2 + 2 = 0$</td>
<td>(1; 1; 1)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>$z = \ln(8x^2 - y^2)$</td>
<td>(−1/2; 1; 0)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>$z = 2xy + 3y^2 - 5x$</td>
<td>(3; 4; 57)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>$z = \ln(x^2 + xy)$</td>
<td>(1; 0; 0)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$x^2 + y^3 - z^2 = 1$</td>
<td>(1; 1; 1)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>$x^4 + y^4 + z^4 = 3$</td>
<td>(1; -1; 1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>№</th>
<th>$z(x, y)$</th>
<th>A</th>
<th>\vec{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\arctg(2xy)$</td>
<td>(−1, 2)</td>
<td>(−3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>$5x^2 + y^2 - 3xy$</td>
<td>(3, 2)</td>
<td>(2, 3)</td>
</tr>
<tr>
<td>3</td>
<td>$\ln\left(4x^2 + 2y^2\right)$</td>
<td>(2, 2)</td>
<td>(1, −1)</td>
</tr>
<tr>
<td>4</td>
<td>$3x^4 + 2x^2y^3$</td>
<td>(−1, 2)</td>
<td>(4, −3)</td>
</tr>
<tr>
<td>5</td>
<td>$\sqrt{x^2 + y^2 - xy}$</td>
<td>(2, 2)</td>
<td>(−4, 3)</td>
</tr>
<tr>
<td>6</td>
<td>$\ln\left(5x^2 + 4y^2\right)$</td>
<td>(1, 1)</td>
<td>(2, −1)</td>
</tr>
<tr>
<td>7</td>
<td>$3x^2y^2 + 5xy^2$</td>
<td>(1, 1)</td>
<td>(2, 1)</td>
</tr>
<tr>
<td>8</td>
<td>$e^{x^2y - y^2}$</td>
<td>(2, 4)</td>
<td>(3, 1)</td>
</tr>
<tr>
<td>9</td>
<td>$2x^2 + 3xy + y^2$</td>
<td>(2, 1)</td>
<td>(3, −4)</td>
</tr>
<tr>
<td>10</td>
<td>$\arctg(x^3y)$</td>
<td>(−1, 3)</td>
<td>(−1, −4)</td>
</tr>
<tr>
<td>11</td>
<td>$\sqrt[3]{2x^2 - xy^2 + 2}$</td>
<td>(3, 2)</td>
<td>(−5, 1)</td>
</tr>
<tr>
<td>12</td>
<td>$\left(x^2 + \frac{1}{y}\right)^2$</td>
<td>(2, −1)</td>
<td>(1, 4)</td>
</tr>
<tr>
<td>13</td>
<td>$\arcsin\left(\frac{y^2}{x}\right)$</td>
<td>(2, 1)</td>
<td>(−1, 1)</td>
</tr>
<tr>
<td>14</td>
<td>$\sin(x^3y - xy^2)$</td>
<td>(2, 4)</td>
<td>(−1, 3)</td>
</tr>
</tbody>
</table>
Задача 10. Найти экстремумы функции двух переменных \(z(x, y) \).
Задача 11. Найти экстремумы функции трех переменных $u(x, y, z)$.

<table>
<thead>
<tr>
<th>№</th>
<th>$u(x, y, z)$</th>
<th>№</th>
<th>$u(x, y, z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$x^2 + 2y^2 + 2z^2 + 2xy + 2y - 4z$</td>
<td>10</td>
<td>$x^2 + y^2 + 4z^2 + xy - 8z + 3y$</td>
</tr>
<tr>
<td>2</td>
<td>$x^4 + y^4 + z^4 + 2x^3 + x^2 + 4y + 4z$</td>
<td>11</td>
<td>$\frac{\sqrt[6]{xyz} - x + y + z}{6}, (x > 0, y > 0, z > 0)$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{4\sqrt[3]{xyz} - x + y + z}{4}, (x > 0, y > 0, z > 0)$</td>
<td>12</td>
<td>$x^2 + 4y^2 + \frac{z^2}{9} - 2xy - 6y - \frac{2z}{9}$</td>
</tr>
<tr>
<td>4</td>
<td>$x^2 + y^2 + z^2 + xz + zy - 3x - 3y - 4z$</td>
<td>13</td>
<td>$x^4 + y^4 + z^4 + 2x^3 - 2x^2 - \frac{y}{2} + 4z$</td>
</tr>
</tbody>
</table>
Задача 12. Найти условный экстремум функции $z(x,y)$ при указанном уравнении связи.

<table>
<thead>
<tr>
<th>№</th>
<th>$u(x,y,z)$</th>
<th>№</th>
<th>$u(x,y,z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$x^2 + 4y^2 + 9z^2 - 162 \ln x - 288 \ln y - 72 \ln z$</td>
<td>14</td>
<td>$\frac{1}{\sqrt{x+y+z}} - \frac{x+y+z}{3}$, $(x>0, y>0, z>0)$</td>
</tr>
<tr>
<td>6</td>
<td>$x^2 + y^2 + z^2 - xy - yz + xz - 3x + y - 4z$</td>
<td>15</td>
<td>$\frac{1}{xyz} + \frac{x+y+z}{16}$</td>
</tr>
<tr>
<td>7</td>
<td>$5\sqrt{x+y+z} - \frac{x+y+z}{5}$, $(x>0, y>0, z>0)$</td>
<td>16</td>
<td>$x + \frac{y^2}{x} + \frac{2z^2}{y} + \frac{1}{z}$, $(z>0)$</td>
</tr>
<tr>
<td>8</td>
<td>$x^2 + y^2 + z^2 + \frac{xy}{2} - \frac{zy}{3} - xz - 4x - 12y - 2z$</td>
<td>17</td>
<td>$\frac{1}{xy} + \frac{y + z}{z}$</td>
</tr>
<tr>
<td>9</td>
<td>$x^4 + y^4 + z^4 - 2x^3 + x^2 + 4y - 4z$</td>
<td>18</td>
<td>$\frac{1}{x^3 y^3 z^3} + 3(x + y + z)$</td>
</tr>
<tr>
<td>19</td>
<td>$x + \frac{y^2}{x} + \frac{8z^2}{y} + \frac{2}{z}$, $(z>0)$</td>
<td>20</td>
<td>$8 + \frac{2x^2}{y} + \frac{16y^2}{z} + z$, $(x>0)$</td>
</tr>
<tr>
<td>20</td>
<td>$x^4 + y^4 + z^4 - 2x^3 - 2x^2 + \frac{y + z}{2}$</td>
<td>21</td>
<td>$\frac{x + y + 16}{y + z}$</td>
</tr>
<tr>
<td>21</td>
<td>$\frac{x + y + 16}{z} + \frac{1}{x}$</td>
<td>22</td>
<td>$\frac{2x}{z} + \frac{y + z}{x} + \frac{1}{y}$, $(y>0)$</td>
</tr>
<tr>
<td>22</td>
<td>$\frac{2x}{z} + \frac{y + z}{x} + \frac{1}{y}$, $(y>0)$</td>
<td>23</td>
<td>$\frac{1}{x^2 y^2 z^2} + 2(x + y + z)$</td>
</tr>
<tr>
<td>23</td>
<td>$\frac{2x^2}{z} + \frac{16z^2}{y} - \frac{2}{x} + y$, $(x>0)$</td>
<td>24</td>
<td>$\frac{4x + y + 2}{y + z}$, $(x>0, y>0, z>0)$</td>
</tr>
<tr>
<td>24</td>
<td>$\frac{4x + y + 2}{y + z}$, $(x>0, y>0, z>0)$</td>
<td>25</td>
<td>$\frac{5x + y + 1}{z} + \frac{1}{x} + \frac{z}{y}$</td>
</tr>
</tbody>
</table>

Задача 12. Найти условный экстремум функции $z(x,y)$ при указанном уравнении связи.

<table>
<thead>
<tr>
<th>№</th>
<th>$z(x,y)$</th>
<th>уравнение связи</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$6 - 5x - 4y$</td>
<td>$x^2 + y^2 = 9$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{2}{\sqrt{x}} + \frac{4}{\sqrt{y}}$</td>
<td>$2x + 4y = 1$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{3\sqrt{y}}{x^2} - 2 \ln x + \frac{\ln y}{3}$</td>
<td>$6x - \frac{y}{5} = 1$</td>
</tr>
<tr>
<td>№</td>
<td>(z(x, y))</td>
<td>уравнение связи</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>(1 + \frac{1}{x} + \frac{1}{y})</td>
<td>(\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{8})</td>
</tr>
<tr>
<td>5</td>
<td>(12x^2 + 12xy + 3y^2 + 4)</td>
<td>(4x^2 + y^2 = 25), ((x > 0))</td>
</tr>
<tr>
<td>6</td>
<td>(xy)</td>
<td>(x^2 + y^2 = 1), ((x > 0))</td>
</tr>
<tr>
<td>7</td>
<td>(5 - 3x - 4y)</td>
<td>(x^2 + y^2 = 25)</td>
</tr>
<tr>
<td>8</td>
<td>(\frac{1}{\sqrt[3]{x}} + \frac{4}{\sqrt[3]{y}})</td>
<td>(8x + 32y = 1)</td>
</tr>
<tr>
<td>9</td>
<td>(\frac{xy}{5} + \frac{x}{6} - \frac{y}{6})</td>
<td>(x^2 + y^2 = 1), ((x < 0, y > 0))</td>
</tr>
<tr>
<td>10</td>
<td>(2x^2 + 12xy + y^2)</td>
<td>(x^2 + 4y^2 = 25), ((x > 0))</td>
</tr>
<tr>
<td>11</td>
<td>(\frac{1}{x} + \frac{1}{2y^2})</td>
<td>(x - y = 2)</td>
</tr>
<tr>
<td>12</td>
<td>(2\sqrt{x} + 3\sqrt{y})</td>
<td>(4x + 6y = 1)</td>
</tr>
<tr>
<td>13</td>
<td>(x^2 - 2xy + 2y^2 - 4y)</td>
<td>(x + 2y = 8)</td>
</tr>
<tr>
<td>14</td>
<td>(1 + \frac{2}{x} + \frac{3}{y})</td>
<td>(\frac{4}{x^2} + \frac{6}{y^2} = \frac{1}{10})</td>
</tr>
<tr>
<td>15</td>
<td>(x + 8y + 10)</td>
<td>(\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{5})</td>
</tr>
<tr>
<td>16</td>
<td>(x^2 + xy + y^2)</td>
<td>(x^2 + y^2 = 1), ((x > 0))</td>
</tr>
<tr>
<td>17</td>
<td>(\frac{\sqrt{x}}{\sqrt{y}} + \frac{\ln x}{2} - \frac{\ln y}{7})</td>
<td>(\frac{7x}{5} - \frac{2y}{5} = 1)</td>
</tr>
<tr>
<td>18</td>
<td>(4 + \frac{4}{x^2} - \frac{1}{2y^2})</td>
<td>(x + y = 3)</td>
</tr>
<tr>
<td>19</td>
<td>(\frac{5xy}{2} - 3x - 3y)</td>
<td>(x^2 + y^2 = 1), ((x < 0, y < 0))</td>
</tr>
<tr>
<td>20</td>
<td>(x + y)</td>
<td>(\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{2})</td>
</tr>
<tr>
<td>21</td>
<td>(x^3y^7 + 3\ln x + 7 \ln y)</td>
<td>(\frac{3x}{10} + \frac{7y}{10} = 1)</td>
</tr>
<tr>
<td>22</td>
<td>(1 - 4x - 8y)</td>
<td>(x^2 - 8y^2 = 8)</td>
</tr>
<tr>
<td>№</td>
<td>(z(x, y))</td>
<td>уравнение связи</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>23</td>
<td>(2\sqrt{x} - 3\sqrt{y})</td>
<td>(4x - 6y = -1)</td>
</tr>
<tr>
<td>24</td>
<td>(5 - 2x - 2y)</td>
<td>(x^2 - 4y^2 = 12)</td>
</tr>
<tr>
<td>25</td>
<td>(-\frac{xy}{3} + \frac{x}{7} - \frac{y}{7})</td>
<td>(x^2 + y^2 = 1) ((x > 0, y < 0))</td>
</tr>
<tr>
<td>26</td>
<td>(x^2y + 4x)</td>
<td>(x + 2y = 1)</td>
</tr>
<tr>
<td>27</td>
<td>(\frac{x + y}{3})</td>
<td>(x^2 + y^2 = 1)</td>
</tr>
<tr>
<td>28</td>
<td>(\frac{22}{7}x^7 + y^{11})</td>
<td>(x^3 + \frac{1}{2}y^3 = \frac{3}{2}) ((x > 0, y > 0))</td>
</tr>
<tr>
<td>29</td>
<td>(2x - y)</td>
<td>(\frac{x^2}{4} - \frac{y^2}{9} = 1)</td>
</tr>
<tr>
<td>30</td>
<td>(x^2 - 2xy + y^2)</td>
<td>(x^2 + y^2 = 4)</td>
</tr>
<tr>
<td>31</td>
<td>(\frac{3 - 2}{x})</td>
<td>(\frac{6}{x^2} + \frac{4}{y^2} = \frac{1}{10})</td>
</tr>
</tbody>
</table>

Задача 13. Найти наименьшее и наибольшее значение функции \(z(x, y) \) в замкнутой области \(D \), заданной системой неравенств.

<table>
<thead>
<tr>
<th>№</th>
<th>(z(x, y))</th>
<th>область (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x^2 + 2xy - y^2 - 4x)</td>
<td>(y \leq x + 1, \quad y \geq 0, \quad x \leq 3)</td>
</tr>
<tr>
<td>2</td>
<td>(xy)</td>
<td>(x^2 + y^2 \leq 1)</td>
</tr>
<tr>
<td>3</td>
<td>(x^2 - 2xy - y^2 + 4x + 1)</td>
<td>(x + y + 1 \leq 0, \quad y \geq 0, \quad x \geq -3)</td>
</tr>
<tr>
<td>4</td>
<td>(x^3 + y^3 + 2xy)</td>
<td>(-1 \leq x \leq 1, \quad 0 \leq y \leq 2)</td>
</tr>
<tr>
<td>5</td>
<td>(5x^2 - 3xy + y^2 + 4)</td>
<td>(x + y \leq 1, \quad y \geq -1, \quad x \geq -1)</td>
</tr>
<tr>
<td>6</td>
<td>(4x^2 + 9y^2 - 4x - 6y + 3)</td>
<td>(x + y \leq 1, \quad y \geq 0, \quad x \geq 0)</td>
</tr>
<tr>
<td>7</td>
<td>(x^2 + y^2 - 9xy + 27)</td>
<td>(0 \leq x \leq 3, \quad 0 \leq y \leq 3)</td>
</tr>
<tr>
<td>8</td>
<td>(xy^2)</td>
<td>(x^2 + y^2 \leq 1)</td>
</tr>
<tr>
<td>9</td>
<td>(x^2 + y^2 - xy - x - y)</td>
<td>(x + y \leq 3, \quad y \geq 0, \quad x \geq 0)</td>
</tr>
<tr>
<td>№</td>
<td>(z(x, y))</td>
<td>область (D)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>(x^2 + 2xy - y^2 - 2x + 2y)</td>
<td>(y \leq x + 2, \ y \geq 0, \ x \leq 2)</td>
</tr>
<tr>
<td>11</td>
<td>(x^2 + 2y^2 + 1)</td>
<td>(x + y \leq 3, \ y \geq 0, \ x \geq 0)</td>
</tr>
<tr>
<td>12</td>
<td>(4x + 2y + 4x^2 + y^2 + 6)</td>
<td>(x + y + 2 \leq 0, \ y \leq 0, \ x \leq 0)</td>
</tr>
<tr>
<td>13</td>
<td>(x^2 + 3y^2 + x - y)</td>
<td>(x + y \leq 1, \ y \geq -1, \ x \geq 1)</td>
</tr>
<tr>
<td>14</td>
<td>(x^2 + 2xy + 2y^2)</td>
<td>(-1 \leq x \leq 1, \ 0 \leq y \leq 2)</td>
</tr>
<tr>
<td>15</td>
<td>(10 + 2xy - x^2)</td>
<td>(0 \leq y \leq 4 - x^2)</td>
</tr>
<tr>
<td>16</td>
<td>(x^3 + y^3 - 6xy)</td>
<td>(0 \leq x \leq 2, \ -1 \leq y \leq 2)</td>
</tr>
<tr>
<td>17</td>
<td>(x^2 + xy - 2)</td>
<td>(4x^2 - 4 \leq y \leq 0)</td>
</tr>
<tr>
<td>18</td>
<td>(x^2 + xy)</td>
<td>(-1 \leq x \leq 1, \ 0 \leq y \leq 3)</td>
</tr>
<tr>
<td>19</td>
<td>(x^2 - 2xy + 2y^2 - 4y)</td>
<td>(x + 2y \leq 8, \ y \geq 1, \ x \geq 1)</td>
</tr>
<tr>
<td>20</td>
<td>(x^2 + y^3 - 3xy)</td>
<td>(0 \leq x \leq 2, \ 0 \leq y \leq 2)</td>
</tr>
<tr>
<td>21</td>
<td>(3 - 2x^2 - xy - y^2)</td>
<td>(y \leq x, \ y \geq 0, \ x \leq 1)</td>
</tr>
<tr>
<td>22</td>
<td>(x^3 + 8y^3 - 6xy + 1)</td>
<td>(0 \leq x \leq 2, \ -1 \leq y \leq 1)</td>
</tr>
<tr>
<td>23</td>
<td>(x^2 y(5 - 2x - 3y))</td>
<td>(x + y \leq 1, \ y \geq 0, \ x \geq 0)</td>
</tr>
<tr>
<td>24</td>
<td>(x^2 + 2xy - y^2 + 4x)</td>
<td>(x + y + 2 \leq 0, \ y \leq 0, \ x \leq 0)</td>
</tr>
<tr>
<td>25</td>
<td>(x^2 y(4 - x - y))</td>
<td>(x + y \leq 6, \ y \geq 0, \ x \geq 0)</td>
</tr>
<tr>
<td>26</td>
<td>(x^2 + y^2 + xy - x - y)</td>
<td>(x + y \leq 3, \ y \geq 0, \ x \geq 0)</td>
</tr>
<tr>
<td>27</td>
<td>(x^2 + 3y^2 - x + 18y - 4)</td>
<td>(0 \leq x \leq 1, \ 0 \leq y \leq 1)</td>
</tr>
<tr>
<td>28</td>
<td>(\frac{xy}{3} - \frac{x^2 y}{5} - xy^2)</td>
<td>(\frac{x}{2} + \frac{y}{8} \leq 1, \ y \geq 0, \ x \geq 0)</td>
</tr>
<tr>
<td>29</td>
<td>(x^2 y(7 - 3x - 4y))</td>
<td>(x + y \leq 2, \ y \geq 0, \ x \geq 0)</td>
</tr>
<tr>
<td>30</td>
<td>(x^3 y^2)</td>
<td>(3x^2 + y^2 \leq 1)</td>
</tr>
<tr>
<td>31</td>
<td>(2x^2 + 2xy + y^2)</td>
<td>(x + y \leq 2, \ y \geq -1, \ x \geq -1)</td>
</tr>
</tbody>
</table>

Задача 14. Экспериментально получены пять значений функции \(y = f(x) \) при пяти значениях аргумента \(x \), которые записаны в таблице. Методом наименьших квадратов найти функцию вида \(Y = aX + b \), выражающую приближенно (аппроксимирующую) функцию \(y = f(x) \). Сделать чертеж, на
котором в декартовой прямоугольной системе координат изобразить экспериментальные точки и график аппроксимирующей функции \(Y = aX + b \).

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>№</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6,1</td>
<td>6,7</td>
<td>5,9</td>
<td>2,7</td>
<td>4,1</td>
</tr>
<tr>
<td>2</td>
<td>4,4</td>
<td>5,4</td>
<td>3,7</td>
<td>2,3</td>
<td>1,7</td>
</tr>
<tr>
<td>3</td>
<td>5,7</td>
<td>6,7</td>
<td>5,6</td>
<td>3,9</td>
<td>3,6</td>
</tr>
<tr>
<td>4</td>
<td>4,2</td>
<td>4,6</td>
<td>3,6</td>
<td>1,2</td>
<td>1,9</td>
</tr>
<tr>
<td>5</td>
<td>5,9</td>
<td>6,9</td>
<td>5,4</td>
<td>3,4</td>
<td>3,9</td>
</tr>
<tr>
<td>6</td>
<td>3,7</td>
<td>4,9</td>
<td>3,6</td>
<td>1,3</td>
<td>2,0</td>
</tr>
<tr>
<td>7</td>
<td>5,4</td>
<td>6,4</td>
<td>5,3</td>
<td>3,1</td>
<td>3,3</td>
</tr>
<tr>
<td>8</td>
<td>4,5</td>
<td>5,4</td>
<td>3,7</td>
<td>1,7</td>
<td>2,6</td>
</tr>
<tr>
<td>9</td>
<td>5,0</td>
<td>6,1</td>
<td>4,5</td>
<td>2,7</td>
<td>3,2</td>
</tr>
<tr>
<td>10</td>
<td>3,8</td>
<td>4,8</td>
<td>3,5</td>
<td>2,9</td>
<td>1,5</td>
</tr>
<tr>
<td>11</td>
<td>5,6</td>
<td>6,2</td>
<td>5,2</td>
<td>3,1</td>
<td>3,4</td>
</tr>
<tr>
<td>12</td>
<td>3,7</td>
<td>4,9</td>
<td>3,6</td>
<td>1,3</td>
<td>2,0</td>
</tr>
<tr>
<td>13</td>
<td>5,3</td>
<td>6,4</td>
<td>5,2</td>
<td>3,2</td>
<td>3,4</td>
</tr>
<tr>
<td>14</td>
<td>4,5</td>
<td>5,2</td>
<td>3,8</td>
<td>1,8</td>
<td>2,2</td>
</tr>
<tr>
<td>15</td>
<td>6,0</td>
<td>6,3</td>
<td>5,4</td>
<td>3,3</td>
<td>3,5</td>
</tr>
<tr>
<td>16</td>
<td>4,3</td>
<td>5,3</td>
<td>3,8</td>
<td>1,8</td>
<td>2,3</td>
</tr>
<tr>
<td>17</td>
<td>3,9</td>
<td>4,9</td>
<td>3,4</td>
<td>1,4</td>
<td>1,9</td>
</tr>
<tr>
<td>18</td>
<td>6,0</td>
<td>6,6</td>
<td>5,9</td>
<td>2,9</td>
<td>4,1</td>
</tr>
<tr>
<td>19</td>
<td>5,1</td>
<td>6,1</td>
<td>4,6</td>
<td>2,6</td>
<td>3,1</td>
</tr>
<tr>
<td>20</td>
<td>4,7</td>
<td>5,7</td>
<td>4,2</td>
<td>2,2</td>
<td>2,7</td>
</tr>
<tr>
<td>21</td>
<td>6,9</td>
<td>7,9</td>
<td>6,4</td>
<td>4,4</td>
<td>4,9</td>
</tr>
<tr>
<td>22</td>
<td>5,2</td>
<td>6,2</td>
<td>4,7</td>
<td>2,7</td>
<td>3,2</td>
</tr>
<tr>
<td>23</td>
<td>5,7</td>
<td>6,7</td>
<td>5,2</td>
<td>3,2</td>
<td>3,7</td>
</tr>
<tr>
<td>24</td>
<td>4,5</td>
<td>5,5</td>
<td>4,0</td>
<td>2,0</td>
<td>2,5</td>
</tr>
<tr>
<td>25</td>
<td>4,9</td>
<td>5,9</td>
<td>4,4</td>
<td>2,4</td>
<td>2,9</td>
</tr>
<tr>
<td>26</td>
<td>3,9</td>
<td>4,9</td>
<td>3,4</td>
<td>1,4</td>
<td>1,9</td>
</tr>
<tr>
<td>27</td>
<td>5,5</td>
<td>6,5</td>
<td>5,0</td>
<td>3,0</td>
<td>3,5</td>
</tr>
<tr>
<td>28</td>
<td>4,7</td>
<td>5,9</td>
<td>4,6</td>
<td>2,3</td>
<td>3,0</td>
</tr>
<tr>
<td>29</td>
<td>5,2</td>
<td>6,2</td>
<td>5,1</td>
<td>2,9</td>
<td>3,1</td>
</tr>
<tr>
<td>30</td>
<td>4,7</td>
<td>5,4</td>
<td>4,0</td>
<td>2,0</td>
<td>2,4</td>
</tr>
<tr>
<td>31</td>
<td>6,8</td>
<td>7,8</td>
<td>6,3</td>
<td>4,3</td>
<td>4,8</td>
</tr>
</tbody>
</table>

Задача 15. Экспериментально получены значения функции \(y = f(x) \), которые записаны в таблице. Методом наименьших квадратов найти функцию
вида \(Y = aX^2 + bX + c \) (для нечетных вариантов) и \(Y = \frac{a}{X^2} + \frac{b}{X} + c \) (для четных вариантов), аппроксимирующую функцию \(y = f(x) \). Сделать чертеж, на котором в декартовой прямоугольной системе координат изобразить экспериментальные точки и график аппроксимирующей функции.

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(x_i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,2</td>
<td>5,7</td>
<td>5,3</td>
<td>4,9</td>
<td>3,6</td>
<td>1,8</td>
<td>2</td>
<td>2,5</td>
<td>0,8</td>
<td>0,4</td>
<td>0,3</td>
<td>0,0</td>
</tr>
<tr>
<td>3</td>
<td>−0,3</td>
<td>−0,9</td>
<td>−0,1</td>
<td>0,6</td>
<td>2,2</td>
<td>5,0</td>
<td>4</td>
<td>2,7</td>
<td>0,8</td>
<td>0,5</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>5</td>
<td>1,2</td>
<td>1,7</td>
<td>1,2</td>
<td>0,4</td>
<td>−0,7</td>
<td>−2,8</td>
<td>6</td>
<td>1,1</td>
<td>−1,1</td>
<td>−1,2</td>
<td>−1,5</td>
<td>−1,6</td>
</tr>
<tr>
<td>7</td>
<td>−0,5</td>
<td>−0,7</td>
<td>−0,4</td>
<td>0,4</td>
<td>2,3</td>
<td>4,2</td>
<td>8</td>
<td>2,3</td>
<td>0,6</td>
<td>0,5</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>9</td>
<td>1,2</td>
<td>1,6</td>
<td>1,5</td>
<td>0,6</td>
<td>−1,2</td>
<td>−3,2</td>
<td>10</td>
<td>4,1</td>
<td>1,7</td>
<td>1,3</td>
<td>1,2</td>
<td>0,7</td>
</tr>
<tr>
<td>11</td>
<td>−0,1</td>
<td>−1,3</td>
<td>−1,2</td>
<td>−0,2</td>
<td>1,4</td>
<td>3,9</td>
<td>12</td>
<td>0,6</td>
<td>−1,2</td>
<td>−1,6</td>
<td>−1,7</td>
<td>−1,7</td>
</tr>
<tr>
<td>13</td>
<td>1,0</td>
<td>1,6</td>
<td>1,5</td>
<td>0,4</td>
<td>−1,3</td>
<td>−3,7</td>
<td>14</td>
<td>2,5</td>
<td>0,8</td>
<td>0,4</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>15</td>
<td>−0,2</td>
<td>−1,2</td>
<td>−1,5</td>
<td>−1,4</td>
<td>0,3</td>
<td>2,0</td>
<td>16</td>
<td>1,4</td>
<td>−0,3</td>
<td>−0,8</td>
<td>−0,7</td>
<td>−1,0</td>
</tr>
<tr>
<td>17</td>
<td>−1,6</td>
<td>−0,2</td>
<td>0,0</td>
<td>−0,7</td>
<td>−2,5</td>
<td>−5,5</td>
<td>18</td>
<td>4,0</td>
<td>1,8</td>
<td>1,4</td>
<td>1,2</td>
<td>0,9</td>
</tr>
<tr>
<td>19</td>
<td>−1,5</td>
<td>−2,8</td>
<td>−2,6</td>
<td>−1,6</td>
<td>0,4</td>
<td>3,1</td>
<td>20</td>
<td>3,8</td>
<td>1,8</td>
<td>1,3</td>
<td>1,1</td>
<td>1,0</td>
</tr>
<tr>
<td>21</td>
<td>−0,3</td>
<td>−2,4</td>
<td>−2,8</td>
<td>−1,8</td>
<td>−0,3</td>
<td>2,6</td>
<td>22</td>
<td>2,2</td>
<td>−0,2</td>
<td>−0,5</td>
<td>−0,7</td>
<td>−0,8</td>
</tr>
<tr>
<td>23</td>
<td>−0,5</td>
<td>−1,5</td>
<td>−1,8</td>
<td>−0,8</td>
<td>1,6</td>
<td>4,5</td>
<td>24</td>
<td>2,5</td>
<td>0,8</td>
<td>0,4</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>25</td>
<td>−0,3</td>
<td>0,6</td>
<td>1,3</td>
<td>2,0</td>
<td>1,7</td>
<td>1,2</td>
<td>26</td>
<td>2,0</td>
<td>−0,4</td>
<td>−0,5</td>
<td>−0,6</td>
<td>−0,8</td>
</tr>
<tr>
<td>27</td>
<td>−0,8</td>
<td>0,4</td>
<td>0,3</td>
<td>−0,5</td>
<td>−2,0</td>
<td>−4,9</td>
<td>28</td>
<td>3,3</td>
<td>1,5</td>
<td>1,0</td>
<td>0,7</td>
<td>0,6</td>
</tr>
<tr>
<td>29</td>
<td>0,9</td>
<td>1,3</td>
<td>1,2</td>
<td>0,3</td>
<td>−1,5</td>
<td>−3,5</td>
<td>30</td>
<td>2,7</td>
<td>1,0</td>
<td>0,6</td>
<td>0,6</td>
<td>0,5</td>
</tr>
<tr>
<td>31</td>
<td>−1,4</td>
<td>−2,7</td>
<td>−2,5</td>
<td>−1,5</td>
<td>0,5</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Задача 16. Решить прикладные задачи на наибольшее и наименьшее значения.
1. Найти размеры цилиндра наибольшего объема, изготовленного из заготовки в форме шара радиуса \(R \).
2. Крыша дома имеет поперечное сечение в форме равнобедренного треугольника. Каковы должны быть размеры поперечного сечения помещения прямоугольной формы, встроенного на чердаке, чтобы объем помещения был наибольшим.
3. Найти размеры заготовки наибольшего периметра в форме прямоугольного треугольника, гипотенуза которого задана.
4. Изготовить из жести прямоугольную коробку (без крышки) данной емкости V с наименьшими затратами материала.
5. В шар диаметра d вписать прямоугольный параллелепипед наибольшего объема.
6. Найти размеры цилиндрического сосуда наибольшей вместимости с поверхностью S.
7. Имеется прямоугольный лист железа заданных размеров. Вырезать в его углах одинаковые квадраты такого размера, чтобы объем получившейся при загибании краев емкости был наибольшим.
8. Поверхность прямоугольного параллелепипеда равна Q. Найти размеры параллелепипеда наибольшего объема.
9. Сумма ребер прямоугольного параллелепипеда равна a. Найти размеры параллелепипеда наибольшего объема.
10. Найти прямоугольный параллелепипед наибольшего объема при условии, что длина его диагонали равна d.
11. Найти конус вращения объема V с наименьшей полной поверхностью.
12. В шар диаметра d вписать цилиндр с наименьшей полной поверхностью.
13. Из всех прямоугольных параллелепипедов с полной поверхностью S найти тот, который имеет наибольший объем.
14. Определить размеры конуса наибольшего объема, при условии, что его боковая поверхность равна S.
15. Из всех прямоугольных треугольников площадью S найти такой, гипотенуза которого имеет наименьшее значение.
16. Из всех треугольников, вписанных в круг, найти тот, площадь которого наибольшая.
17. Из всех треугольников, имеющих периметр p, найти наибольший по площади.
18. Из всех прямоугольников с заданной площадью S найти такой, периметр которого имеет наименьшее значение.
19. Из всех прямоугольных параллелепипедов объемом V найти тот, полная поверхность которого наименьшая.
20. Представить число $a > 0$ в виде произведения четырех положительных сомножителей так, чтобы их сумма была наименьшей.
21. Найти треугольник данного периметра $2p$, который при вращении около одной из своих сторон образует тело наибольшего объема.
22. Определить наружные размеры открытого прямоугольного ящика с заданной толщиной стенок d и емкостью V так, чтобы на его изготовление было затрачено наименьшее количество материала.
23. Из всех треугольников с одинаковым основанием и одним и тем же углом при вершине найти наибольший по площади.
24. В шар радиуса R вписать прямоугольный параллелепипед наибольшего объема.
25. В данный прямой круговой конус вписать прямоугольный параллелепипед наибольшего объема.
26. При каких размерах открытого прямоугольного ящика с заданным объемом V его поверхность будет наименьшей?

27. Требуется вырезать из круга сектор таким образом, чтобы из него можно было сделать конусообразный фильтр с максимальным объемом.

28. Задан объем открытой цилиндрической емкости. Каковы должны быть ее размеры, чтобы длина сварных швов была минимальной? (Заготовки: лист в форме круга – основание, прямоугольный лист – боковая поверхность).

29. В шар радиуса R вписать конус наибольшего объема.

30. Определить размеры чума наибольшего объема, при заданной площади S его покрытия.

31. В шар радиуса R вписать правильную треугольную пирамиду наибольшего объема.
Раздел 2. Интегральное исчисление функций нескольких переменных

2.1 Двойной интеграл. Определение и основные свойства

Пусть \(D \) – ограниченная замкнутая область на плоскости \(Oxy \), и в области \(D \) задана функция \(f(x,y) \). Проведем следующие построения. Область \(D \) разобьем на \(n \) элементарных частей \(D_i, i = 1,2,...,n \) (см. рис. 2.1). Площадь \(i \)-й элементарной области \(D_i \) обозначим через \(\Delta S_i \), а ее диаметр (наибольшее расстояние между точками области \(D_i \)) – через \(d_i \).

В каждой элементарной области \(D_i \) выберем произвольно точку \(M_i(x_i, y_i) \) и составим интегральную сумму

\[
\sum_{i=1}^{n} f(x_i, y_i) \Delta S_i = f(x_1, y_1) \Delta S_1 + f(x_2, y_2) \Delta S_2 + \ldots + f(x_n, y_n) \Delta S_n.
\]

В этой сумме перейдем к пределу при условии, что максимальный диаметр элементарных областей стремится к нулю. Если предел интегральной суммы существует и не зависит ни от способа разбиения области \(D \), ни от способа выбора точек \(M_i(x_i, y_i) \), то этот предел называется двойным интегралом от функции \(f(x,y) \) по области \(D \) и обозначается символом \(\iint_D f(x,y) \, dx \, dy \). Таким образом, двойной интеграл определяется равенством

\[
\iint_D f(x,y) \, dx \, dy = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i, y_i) \Delta S_i.
\]

Если двойной интеграл существует, то функция \(f(x,y) \) называется интегрируемой в области \(D \).

Теорема (достаточное условие интегрируемости функции). Если функция \(f(x,y) \) непрерывна в ограниченной замкнутой области \(D \), то она интегрируема в этой области.

Далее будем рассматривать только функции, непрерывные в области интегрирования. Укажем основные свойства двойного интеграла.

1. \(\iint_D dx \, dy = \iint_D dS = S \), где \(S \) - площадь области интегрирования.
2. \(\iint_D (f(x,y) + g(x,y)) \, dx \, dy = \iint_D f(x,y) \, dx \, dy + \iint_D g(x,y) \, dx \, dy \).
3. \(\iint_D C \, f(x,y) \, dx \, dy = C \iint_D f(x,y) \, dx \, dy \).
4. Если область D разбить на конечное число областей $D_1, D_2, ..., D_n$, то интеграл по области D равен сумме интегралов по областям $D_1, D_2, ..., D_n$:

$$\iint_D f(x, y) \, dx \, dy = \iint_{D_1} f(x, y) \, dx \, dy + \iint_{D_2} f(x, y) \, dx \, dy + ... + \iint_{D_n} f(x, y) \, dx \, dy.$$

5. Если в области D выполняется неравенство $f(x, y) \geq g(x, y)$, то

$$\iint_D f(x, y) \, dx \, dy \geq \iint_D g(x, y) \, dx \, dy.$$

6. Теорема о среднем. Для функции $f(x, y)$, непрерывной в области D, найдется хотя бы одна точка $M(x_0, y_0) \in D$ такая, что

$$\iint_D f(x, y) \, dS = f(x_0, y_0) \cdot S,$$

где S – площадь области D. Число $f(x_0, y_0)$ называется средним значением функции $z = f(x, y)$ в области D.

2.2. Вычисление двойного интеграла

Определение. Область интегрирования D называется правильной в направлении оси Ox (оси Oy), если любая прямая, параллельная оси Ox (оси Oy) и проходящая через внутреннюю точку области, пересекает границу области D не более двух раз.

Теорема 2.1. Пусть D – область, правильная в направлении оси Oy. Пусть $y = \varphi_1(x)$ и $y = \varphi_2(x)$ – уравнения нижней и верхней границ области D, причем $\varphi_1(x) \leq \varphi_2(x)$ – непрерывные на $[a, b]$ функции. Пусть отрезки вертикальных прямых $x = a$ и $x = b$ ограничивают область D слева и справа (см. рис.2.2). Тогда имеет место формула

$$\iint_D f(x, y) \, dx \, dy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) \, dy. \tag{2.1}$$

Формула (2.1) дает способ вычисления двойного интеграла в декартовых координатах. Интеграл, стоящий в правой части формулы (2.1) называется **повторным**, а интеграл $\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) \, dy$ – **внутренним** интегралом. При вычислении повторного интеграла в формуле (2.1) сначала вычисляется внутренний интеграл по y, аргумент x при этом считается постоянным; затем вычисляется внешний интеграл по переменной x.

![Рис. 2.2](image-url)
Если область \(D \) – правильна в направлении оси \(Ox \), то интегрирование можно проводить в другом порядке: сначала по переменной \(x \), затем – по переменной \(y \). При этом используется следующая теорема.

Теорема 2.2. Пусть \(D \) – область, правильная в направлении оси \(Ox \). Пусть \(x = \psi_1(y), \ x = \psi_2(y) \) – уравнения левой и правой границ области \(D \), причем \(\psi_1(y) \) и \(\psi_2(y) \) – непрерывные на \([c, d]\) функции. Пусть отрезки горизонтальных прямых \(y = c \) и \(y = d \) ограничивают область \(D \) снизу и сверху (см. рис.2.3). Тогда имеет место формула

\[
\int \int \int f(x,y)\,dx\,dy = \int_c^d \int_{\psi_1(y)}^{\psi_2(y)} f(x,y)\,dx. \tag{2.2}
\]

Замечание 1. Если область \(D \) является правильной в направлении обеих координатных осей (см. рис.2.4), то применимы обе формулы (2.1) и (2.2). В этом случае выполняется равенство

\[
\int_{\phi_1(x)}^{\phi_2(x)} \int_a^b f(x,y)\,dy\,dx = \int_c^d \int_{\psi_1(y)}^{\psi_2(y)} f(x,y)\,dx. \tag{2.3}
\]

Переход от левой части равенства (2.3) к правой его части и обратно называется изменением порядка интегрирования в повторном интеграле.

Замечание 2. Если область \(D \) не является правильной ни в направлении оси \(Ox \), ни в направлении оси \(Oy \), то для сведения двойного интеграла к повторному область интегрирования следует разбить на части, правильные в направлении или оси \(Ox \), или оси \(Oy \).

Замечание 3. Если верхняя или нижняя граница области описывается несколькими функциями (как, например, на рис. 2.5 и рис. 2.6), то область интегрирования следует разбить горизонтальными или вертикальными прямыми на несколько правильных областей. Например, на рис. 2.5 область \(D \) разбивается прямой \(x = c \) на две области \(D_1 \) и \(D_2 \), а на рис. 2.6 – прямой \(y = b \) на области \(D_1 \) и \(D_2 \). Двойной интеграл по области \(D \) в этих случаях разбивается на сумму интегралов

\[
\int \int f(x,y)\,dx\,dy = \int \int f(x,y)\,dx\,dy + \int \int f(x,y)\,dx\,dy. \tag{2.4}
\]
Замечание 4. При изменении порядка интегрирования в повторном интеграле используется формула (2.3). Для этого вначале нужно восстановить область, на которую распространен интеграл, и перейти к двойному интегралу. Затем от двойного нужно перейти к одному или некоторым повторным интегралам с другим порядком интегрирования. Рекомендуется использовать следующий порядок решения задачи.

1. Если задан интеграл \(\int_{a}^{b} \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \, dy \, dx \), то сначала строят вертикальные прямые \(x = a, x = b \). Затем по пределам внутреннего интеграла \(\varphi_1(x) \) и \(\varphi_2(x) \) записывают уравнения нижней и верхней границ области интегрирования: \(y = \varphi_1(x) \) и \(y = \varphi_2(x) \) и строят эти линии до пересечения с прямыми \(x = a \) и \(x = b \). Построенные линии ограничивают область интегрирования в двойном интеграле.

2. Если же задан интеграл \(\int_{c}^{d} \int_{\psi_1(y)}^{\psi_2(y)} f(x,y) \, dx \, dy \), то сначала строят горизонтальные прямые \(y = c, y = d \). Затем по пределам внутреннего интеграла \(\psi_1(y) \) и \(\psi_2(y) \) записывают уравнения левой и правой границ области интегрирования: \(x = \psi_1(y) \) и \(x = \psi_2(y) \) и строят линии, определяемые этими уравнениями. Построенные линии ограничивают область интегрирования.

3. Если две области интегрирования имеют общую границу, то их можно объединить в одну область и интегрирование вести по этой области.

4. Полученную область интегрирования в случае необходимости разбивают на части так, чтобы они были правильными по соответствующей переменной, а уравнения каждой границы любой части можно было описать одной формулой.

5. Затем для каждой части области интегрирования записывают повторный интеграл.

61
Пример решения задачи 1.
Изменить порядок интегрирования.

\[
\int_0^1 \int_0^{\sqrt{1-(y-1)^2}} f(x,y) dx dy + \int_0^1 \int_0^{2-y} f(x,y) dy dx.
\]

Решение. Строим область интегрирования \(D_1 \) для первого интеграла. По пределам внешнего интеграла 0 и 1 находим уравнения горизонтальных линий \(y = 0, \ y = 1 \) и строим их. Затем по пределам интегрирования внутреннего интеграла 0 и \(\sqrt{1-(y-1)^2} \) находим уравнения левой и правой границ области:

\(x = 0 \) и \(x = \sqrt{1-(y-1)^2} \). Первое уравнение задает прямую, совпадающую с осью \(Oy \). Второе уравнение преобразуется к виду:

\[x^2 + (y-1)^2 = 1 \]

и определяет окружность радиуса \(R = 1 \) с центром в точке \((0, 1)\).

Точнее, только правую часть окружности. Строим эти линии, получим область \(D_1 \) (см. рис.2.7).

Сстроим область интегрирования \(D_2 \) для второго интеграла. По пределам внешнего интеграла 1 и 2 находим уравнения горизонтальных линий \(y = 1, \ y = 2 \) и строим их. Затем по пределам интегрирования внутреннего интеграла 0 и \(2 - y \) находим уравнения левой и правой границ области:

\(x = 0 \) и \(x = 2 - y \). Строим эти линии, получим область \(D_2 \) (см. рис. 2.7). Значит, сумма повторных интегралов равна двойному интегралу по области \(D = D_1 \cup D_2 \).

Изменим порядок интегрирования. Область \(D = D_1 \cup D_2 \) сверху ограничена прямой \(x = 2 - y \), а снизу дугой окружности \(x = \sqrt{1-(y-1)^2} \). Таким образом, область интегрирования \(D \) определяется совместными неравенствами: \(\sqrt{1-(y-1)^2} \leq x \leq 2 - y, \ 0 \leq y \leq 2 \). Отсюда видим, что крайними значениями переменной \(x \) будут 0 и 1. Из уравнений линий: \(x = 2 - y \) и \(x = \sqrt{1-(y-1)^2} \) выражаем \(y \) через \(x \), получим: \(y = 2 - x \) и \(y = 1 \pm \sqrt{1-x^2} \). Так как нижней границей области \(D \) является дуга нижней части окружности, то выбираем \(y = 1 - \sqrt{1-x^2} \).

Таким образом, при изменении порядка интегрирования будем иметь

\[
\int_0^1 \int_0^{\sqrt{1-(y-1)^2}} f(x,y) dx dy + \int_0^1 \int_0^{2-y} f(x,y) dy dx = \int_0^1 \int_{1-\sqrt{1-x^2}}^{1} f(x,y) dy dx.
\]
Замечание 5. Для вычисления двойного интеграла сначала строится область интегрирования и устанавливается наиболее удобный порядок интегрирования, обусловленный стремлением либо уменьшить количество повторных интегралов, либо упростить уравнения границ, либо упростить процесс нахождения первообразной. Затем двойной интеграл сводится к повторному по формулам (2.2) или (2.3).

Пример решения задачи 2.
Вычислить \[\iint_D (48xy - 108x^2y^2) dx dy, \quad D: y = 1, \quad y = x^2, \quad y = 3\sqrt{x}. \]

Решение. Строим область интегрирования \(D \) (см. рис. 2.8). В примере подынтегральная функция – многочлен по \(x, y \), поэтому ее легко интегрировать в любом порядке. Если в повторном интеграле внешний интеграл взять по \(x \), а внутренний по \(y \), то область интегрирования придется разбивать на две части, поскольку нижняя граница области \(D \) состоит из кусков двух линий. Если же проинтегрировать сначала по \(x \), а затем по \(y \), то область не нужно будет разбивать на части. В этом случае проецируем \(D \) на ось \(Oy \), получим отрезок [0, 1]. Значит, пределы по \(y \) равны 0 и 1. Находим пределы интегрирования по \(x \). Левой границей области \(D \) будет парабола \(y = x^2 \), а правой – парабола \(y = 3\sqrt{x} \). Из уравнений выражаем \(x \) через \(y \), получим \(x = -\sqrt{y} \), \(x = \sqrt{y} \). Следовательно,

\[
\iint_D (48xy - 108x^2y^2) dx dy = \int_0^{\sqrt{y}} \left(\int_0^{y^3} (48xy - 108x^2y^2) dx \right) dy - \int_0^{\sqrt{y}} \left(\int_0^{y^3} (48xy - 108x^2y^2) dx \right) dy = 16.
\]

Ответ: 16.

Пример решения задачи 3.
Вычислить \[\iint_D y^2 \cos \left(\frac{xy}{2} \right) dx dy, \quad D: x = 0, \quad y = x, \quad y = \sqrt{\pi}. \]

Решение. Строим область интегрирования (см. рис. 2.9). Если при сведении двойного интеграла к повторному внутренний интеграл находить по \(y \), то для его вычисления придется дважды интегрировать по частям. Чтобы избежать этого, сначала проинтегрируем по \(x \), затем по \(y \). Получим

\[
\iint_D y^2 \cos \left(\frac{xy}{2} \right) dx dy = \int_0^{\sqrt{\pi}} \left(\int_0^y y^2 dy \right) \cos \left(\frac{xy}{2} \right) dx = \int_0^{\sqrt{\pi}} y^2 dy \left(\int_0^y \sin \left(\frac{xy}{2} \right) dx \right)_0^y = 0.
\]
Ответ: 2.

2.3. Тройной интеграл и его вычисление

Пусть G— ограниченная замкнутая область в трехмерном пространстве, и в области G задана функция \(f(x,y,z) \). Проведем следующие построения. Область G разобьем на \(n \) элементарных частей \(G_i \), \(i=1,2,\ldots,n \). Объем элементарной области \(G_i \) обозначим через \(\Delta V_i \), а его диаметр (т. е. наибольшее расстояние между точками области \(G_i \)) — через \(d_i \). В каждой области \(G_i \) выберем произвольно точку \(M_i(x_i,y_i,z_i) \) и составим интегральную сумму

\[
\sum_{i=1}^{n} f(x_i,y_i,z_i)\Delta V_i = f(x_1,y_1,z_1)\Delta V_1 + f(x_2,y_2,z_2)\Delta V_2 + \ldots + f(x_n,y_n,z_n)\Delta V_n.
\]

В этой сумме перейдем к пределу при условии, что максимальный диаметр элементарных областей стремится к нулю. Если предел интегральной суммы существует и не зависит ни от способа разбиения области G, ни от способа выбора точек \(M_i(x_i,y_i,z_i) \), то этот предел называется двойным интегралом от функции \(f(x,y,z) \) по области G и обозначается символом \(\iiint_{G} f(x,y,z)\,dx\,dy\,dz \).

Таким образом, тройной интеграл определяется равенством

\[
\iiint_{G} f(x,y,z)\,dx\,dy\,dz = \lim_{(\max d_i\to 0)} \sum_{i=1}^{n} f(x_i,y_i,z_i)\Delta V_i.
\]

Если тройной интеграл существует, то функция \(f(x,y,z) \) называется интегрируемой в области G. Свойства тройного интеграла идентичны свойствам двойного интеграла, поэтому мы их не приводим.

Тройной интеграл вычисляется путем сведения его к трехкратному по той же схеме, что и двойной. Так если область G является правильной в направлении оси Oz (см. рис. 2.10), то сначала область G проектируют на плоскость Oxy; при этом в проекции получается плоская область D. Затем находятся уравнение нижней границы \(z = \psi_1(x,y) \) и уравнение верхней

Рис. 2.10

1 Т. е. любая прямая, параллельная оси Oz и проходящая через внутреннюю точку области, пересекает границу области не более, чем в двух точках.
грани́цы \(z = \psi_2(x, y) \). В итоге тройной интеграл сводится к комбинации определенного и двойного интеграла.

\[
\iiint_G f(x, y, z) \, dx \, dy \, dz = \iint_D f(x, y, z) \, dz.
\]

Двойной интеграл сводится к повторному методами, изложенными в пункте 2.2. В частности, если плоская область \(D \) правильна в направлении оси \(Oy \) и имеет уравнения нижней и верхней границы соответственно \(y = \varphi_1(x) \) и \(y = \varphi_2(x) \), где \(x \in [a, b] \), то тройной интеграл сводится к трехкратному по формуле

\[
\iiint_G f(x, y, z) \, dx \, dy \, dz = \int_a^b \int_{\varphi_1(x)}^{\varphi_2(x)} \int f(x, y, z) \, dz \, dy \, dx. \tag{2.4}
\]

Аналогичным образом поступают и в том случае, когда область интегрирования правильна в направлении других координатных осей.

Заме́чание 1. В случае, когда область интегрирования \(G \) представляет собой вертикальный цилиндр, саму область \(G \), можно не изображать на рисунке, а изображать только ее проекцию \(D \) на плоскость \(Oxz \).

Заме́чание 2. При переходе от тройного интеграла к трехкратному порядок интегрирования выбирается по тем же соображениям, что и в случае двойного интеграла. Если, например, область интегрирования правильна по \(z \), порядок расстановки пределов таков. Сначала область интегрирования \(G \) проецируют на плоскость \(Oxz \), получают область \(D \). Область \(D \) разбивают на минимальное число частей: \(D_1, D_2, \ldots \) так, чтобы над каждой частью уравнение как нижней, так и верхней границы области \(G \) задавалось бы одной формулой. Например, если для части \(D_1 \) уравнения нижней и верхней границ имеют вид: \(z = \psi_1(x, y) \) и \(z = \psi_2(x, y) \) соответственно, то функции \(\psi_1(x, y) \) и \(\psi_2(x, y) \) будут являться соответственно нижним и верхним пределом интегрирования по переменной \(z \) в интеграле по области \(D_1 \). Пределы интегрирования по переменным \(x \) и \(y \) расставляются так, как указано в пункте 2.2.

Аналогично поступают и в тех случаях, когда область интегрирования \(G \) правильна по \(x \) или \(y \).

Примеры решения задачи 4.

Пример 4.1.

Вычислить интеграл \(\iiint_G x^2 \sin(xy) \, dx \, dy \, dz \), \(G : \ y = 0, \ y = x, \ x = 1, \ z = 0, \ z = -2 \).

Решение. Строим область интегрирования \(G \) (см. рис. 2.11). Поскольку подынтегральная функция не зависит от \(z \), нужно сначала интегрировать по переменной \(z \); при этом пределы интегрирования по \(z \) очевидно, равны 0 и 0. Если затем интегрировать по \(x \), то при этом придется дважды интегрировать по частям. Поэтому после интегрирования по \(z \) лучше проинтегрировать по \(y \), а затем — по \(x \). Для расстановки пределов интегрирования по \(y \) и \(x \),
спроектируем область \(G \) на плоскость \(Oxy \), получим плоскую область \(D \). Из рис. 2.11 видим, что переменная \(y \) изменяется от прямой \(y = 0 \) до прямой \(y = x \); поэтому пределы интегрирования по переменной \(y \) будут 0 и \(x \). Пределы интегрирования по \(x \) очевидно, равны 0 и 1. В итоге получим

\[
\int\int\int_G x^2 \sin(xy) dx dy dz = \int_0^1 x^2 dx \int_0^x \sin(xy) dy \int_0^z dz = 2 \int_0^x x \left(\frac{1}{x} \sin(xy) \right) dx = 2 \int_0^x x \sin(x^2) dx = ch\frac{1}{2} - 1 \approx 1.54.
\]

Ответ: 1,54.

Пример 4.2.
Вычислить интеграл \(\int\int\int_G y^2 z \sin(xyz) dx dy dz \), \(G: x = 0, x = 2, y = 0, y = -1, z = 0, z = 1 \).

Решение. Строим область интегрирования \(G \) (см. рис. 2.12). Аналогично примеру 2.4a сначала интегрируем по \(x \), затем по \(z \) и, наконец, по \(y \). Пределы интегрирования легко находятся по рис. 2.12. Получим

\[
\int\int\int_G y^2 z \sin(xyz) dx dy dz = \int_{-1}^0 y^2 dy \int_0^2 z dz \int_0^z \sin(xyz) dx =
\]

\[
= \int_{-1}^0 y^2 dy \int_0^2 z \left(\frac{1}{yz} \sin(xyz) \right) dx = \int_{-1}^0 y dy \int_0^z \left(\frac{1}{2} \cosh(2yz) - 1 \right) dz =
\]

\[
= \int_{-1}^0 y dy \left(\frac{1}{2} \sinh(2yz) - y \right) dx = \int_{-1}^0 \left(\frac{1}{2} \sinh(2y) - y \right) dy = \frac{3}{4} - \frac{1}{4} ch2 \approx -0.19.
\]

Ответ: -0.19.

Примеры решения задачи 5.
Пример 5.1.
Вычислить интеграл \(\int\int\int_G (x^2 + y^2) dx dy dz \), \(G: x = 0, y = 2, y = x, z = 0, z = xy \).

Решение. Область интегрирования \(G \) представляет собой вертикальный цилиндр, ограниченный снизу плоскостью \(z=0 \), сверху — поверхностью \(z=xy \). Поэтому согласно замечанию 1 сразу строим проекцию \(G \) на плоскость \(Oxy \), получим плоскую область \(D \), изображенную на рис. 2.13. Сначала интегрируем по \(z \), затем по \(x \), наконец, по \(y \). Пределы интегрирования по \(x \) и \(y \) расставляем по рис. 2.13. Получим
$$\iiint_G (x^2 + y^2) \, dx \, dy \, dz = \int_0^y dy \int_0^{x^2 + y^2} dx \int_0^{x^2 + y^2} dz = \int_0^y dy \int_0^{x^2 + y^2} (x^2 + y^2) \, x^2 \, dx =$$

$$= \int_0^y dy \left(\frac{x^4}{4} + \frac{x^2 y^2}{2} - y^3 \right) = \frac{3}{4} \int_0^y dy^4 = 8.$$

Ответ: 8.

Пример 5.2.

Вычислить интеграл

$$\iiint_G \frac{dxdydz}{(1 + \frac{x}{2} + \frac{y}{3} + \frac{z}{4})^3}, \quad G: \quad \frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1, \quad x = 0, \quad y = 0, \quad z = 0.$$

Решение. Строим область G (см. рис. 2.14). Ее проецией D на плоскость Oxy является основание пирамиды. Область G снизу ограничена плоскостью $z=0$, сверху – плоскостью $z=4 \left(1 - \frac{x}{2} - \frac{y}{3} \right)$. Последнее уравнение преобразуем к виду: $z = 4 \left(1 - \frac{x}{2} - \frac{y}{3} \right)$. Поэтому нижний предел интегрирования по z равен 0, верхний равен $4 \left(1 - \frac{x}{2} - \frac{y}{3} \right)$. Преледы интегрирования по x, y находим из вида проекции D. Очевидно, переменная y изменяется от линии $y=0$ до линии $y=3(1-x/2)$. Уравнение которой можно преобразовать к виду: $y=3(1-x/2)$. Поэтому пределы интегрирования по y будут 0 и $3(1-x/2)$. Пределы интегрирования по x равны 0 и 2. Таким образом

$$\iiint_G \frac{dxdydz}{(1 + \frac{x}{2} + y/3 + z/4)^3} = \int_0^2 dx \int_0^{3(1-x/2)} dy \int_0^{4(1-x/2)-y/3} dz = \int_0^2 dx \int_0^{3(1-x/2)} dy \int_0^{4(1-x/2)-y/3} dz =$$

$$= \int_0^2 \frac{3(1-x/2)}{1 + x/2 + y/3 + z/4} dy = \int_0^2 \frac{3(1-x/2)}{1 + x/2 + y/3 + z/4} dy =$$

$$= \int_0^2 \left(-\frac{y}{2} \right) dy = \left[-\frac{y^2}{4} \right]_0^2 = 4.$$

Ответ: 0,82.
2.4. Замена переменных в кратных интегралах

Чтобы упростить вычисление кратного интеграла зачастую используют метод замены переменных.

2.4.1. Замена переменных в двойном интеграле. Для двойного интеграла метод замены переменных базируется на следующей теореме.

Теорема 2.3. Пусть непрерывные функции \(x = x(u,v) \), \(y = y(u,v) \) осуществляют взаимно однозначное отображение области \(D^* \) переменных \(u,v \) на область \(D \) переменных \(x,y \). Если к тому же функции \(x = x(u,v) \), \(y = y(u,v) \) имеют непрерывные частные производные, и якобиан преобразования

\[
I(u,v) = \begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{vmatrix}
\]

отличен от нуля, то справедлива формула

\[
\iint_D f(x,y) \, dx \, dy = \iint_{D^*} f(x(u,v); y(u,v)) \cdot |I(u,v)| \, du \, dv, \quad (2.5)
\]

При вычислении двойных интегралов чаще всего используется замена декартовых координат \(x,y \) полярными \(r,\varphi \) по формулам:

\[
x = r \cos \varphi, \quad y = r \sin \varphi.
\]

В этом случае якобиан преобразования \(I(r,\varphi) \) равен \(r \), и формула (2.5) примет вид

\[
\iint_D f(x,y) \, dx \, dy = \iint_{D^*} f(r \cos \varphi, r \sin \varphi) r \, dr \, d\varphi, \quad (2.6)
\]

где \(D^* \) – область изменения переменных \(r,\varphi \), соответствующая области \(D \) изменения переменных \(x,y \).

![Рис. 2.15](image1.png)

![Рис. 2.16](image2.png)

Если при этом область интегрирования \(D \) ограничена лучами \(\varphi = \alpha \) и \(\varphi = \beta \) (или касается их), причем \(\alpha < \beta \), и кривыми \(r = r_1(\varphi) \), \(r = r_2(\varphi) \), причем \(r_1(\varphi) \leq r_2(\varphi) \) (см. рис. 2.15), то, переходя в правой части формулы (2.6) к повторному интегралу, перепишем формулу (2.6) в виде
Если начало координат лежит внутри области \(D \) и уравнение границы в полярной системе координат имеет вид \(r = r(\varphi) \) (см. рис. 2.16), то в формуле (2.7) следует положить \(\alpha = 0, \beta = 2\pi, r_1(\varphi) = 0, r_2(\varphi) = r(\varphi) \).

Замечание 1. Переход к полярным координатам полезен в случаях, когда подынтегральная функция имеет вид \(f(x^2 + y^2) \), а область интегрирования \(D \) есть круг, кольцо или часть таковых.

Замечание 2. В ряде задач при вычислении двойных интегралов бывает удобно переходить к обобщенным полярным координатам по формулам:

\[
\alpha \leq r \leq \beta, \quad \varphi_1 \leq \varphi \leq \varphi_2.
\]

Замечание 2. В ряде задач при вычислении двойных интегралов бывает удобно переходить к обобщенным полярным координатам по формулам:

\[
\int \int_{D^*} f(x, y) dx dy = \int_{r_1(\varphi)}^{r_2(\varphi)} \left[\int_{\varphi_1}^{\varphi_2} f(r \cos \varphi, r \sin \varphi) r dr \right] d\varphi.
\]

(2.7)

Для вычисления тройного интеграла заменой переменных часто используют переход от декартовых координат к цилиндрическим или сферическим координатам. При переходе цилиндрическим координатам используется замена переменных (см. рис.2.17):

\[
x = r \cos \varphi, \quad y = r \sin \varphi, \quad z = z.
\]

Якобиан преобразования \(I(r, \varphi, z) \) в этом случае равен \(r \), и формула (2.9) при переходе к цилиндрическим координатам принимает вид

\[
\int \int \int_{G} f(x, y, z) dx dy dz = \int \int \int_{G^*} f(r \cos \varphi, r \sin \varphi, z) r dr d\varphi dz.
\]

(2.10)

При переходе к сферическим координатам используется замена переменных (см. рис.2.18):
\[x = \rho \cos \phi \cos \theta, \quad y = \rho \sin \phi \cos \theta, \quad z = \rho \sin \theta. \]

Якобиан преобразования \(I(r, \phi, \theta) \) в этом случае равен \(\rho^2 \cos \theta \), и формула (2.9) при переходе сферическим координатам принимает вид
\[
\iiint_G f(x, y, z) \, dx \, dy \, dz = \iiint_G f(\rho \cos \phi \cos \theta, \rho \sin \phi \cos \theta, \rho \sin \theta) \rho^2 \cos \theta \, d\rho \, d\phi \, d\theta. \quad (2.11)
\]

![Рис. 2.17](image1.png)

![Рис. 2.18](image2.png)

2.5. Приложения двойного интеграла

2.5.1. Площадь плоской фигуры. Площадь плоской фигуры \(D \) находится по формуле
\[
S = \iint_D dx \, dy. \quad (2.12)
\]

Примеры решения задачи 6.

Пример 6.1.

Найти площадь фигуры, ограниченной линиями:
\[y = \sqrt{16 - x^2}, \quad y = 4 - \sqrt{16 - x^2}, \quad x = 0, \quad (x \geq 0). \]

Решение. Преобразуем уравнение первой линии.
\[
y = \sqrt{16 - x^2}, \quad y^2 = 16 - x^2, \quad x^2 + y^2 = 16.
\]

Значит, линия – окружность радиуса \(R=4 \) с центром в точке \((0, 0)\). Точнее, верхняя половина окружности, так как перед радикалом стоит знак "+". Преобразуем уравнение второй линии:
\[
y = 4 - \sqrt{16 - x^2}, \quad (y-4)^2 = 16 - x^2, \quad x^2 + (y-4)^2 = 16.
\]

Линия – нижняя половина окружности радиуса \(R=4 \) с центром в точке \((0, 4)\). Линия: \(x=0 \) - прямая, совпадающая с осью \(Oy \). Фигура изображена на рис.2.19.

Находим абсциссу точки \(B \) - точки пересечения окружностей, для этого решаем систему уравнений:
\[
\begin{cases}
 y = \sqrt{16 - x^2} \\
 y = 4 - \sqrt{16 - x^2}
\end{cases}
\]

70
Получим: \[\sqrt{16-x^2}=4-\sqrt{16-x^2}, \quad \sqrt{16-x^2}=2, \quad x^2=12.\] Так как \(x \geq 0\), то \(x=2\sqrt{3}\). Следовательно, согласно формуле (2.12)
\[S = \int_D dx dy = \int_0^{2\sqrt{3}} \int_{\sqrt{16-x^2}}^{2\sqrt{3}} (2\sqrt{16-x^2}-4)dx = 2 \int_0^{2\sqrt{3}} \sqrt{16-x^2} dx - 8\sqrt{3}.\]

Получившийся интеграл вычисляем с помощью подстановки: \(x=4\sin t.\)
\[\int_0^{2\sqrt{3}} \sqrt{16-x^2} dx = 16 \int_0^{\pi/3} \cos^2 t dt = 8 \int_0^{\pi/3} (1+\cos 2t) dt = 8(t + \frac{1}{2} \sin 2t) \bigg|_0^{\pi/3} = \frac{8\pi}{3} + 2\sqrt{3}.\]

Значит, \(S_D = 2\left(8\pi/3 + 2\sqrt{3}\right) - 8\sqrt{3} \approx 9,83.\)
Ответ: 9,83.

Пример 6.2.
Найти площадь фигуры, ограниченной линиями: \(y = 2/x, \quad y = 2e^x, \quad y = 1, \quad y = 2.\)
Решение. Изобразим фигуру на рисунке (см. рис. 2.20). Для нахождения площади области воспользуемся формулой (2.12).
При этом, чтобы двойной интеграл сводился к одному повторному, нужно сначала проинтегрировать по \(x\), затем по \(y\). Переменная \(x\) изменяется от линии \(y = 2e^x\) до линии \(y = 2/x\). Из уравнений выражаем \(x\) через \(y\): \(x = \ln(y/2), \quad x = 2/y\). Значит, пределы интегрирования по \(x\) равны \(x = \ln(y/2)\) и \(2/y\). Пределы интегрирования по \(y\) равны \(1\) и \(2\). Следовательно,
\[S = \int_D dx dy = \int_1^2 \int_{\ln(y/2)}^{2/y} \left(2\frac{2}{y} - \ln \frac{y}{2}\right) dy dy = 2\ln y^2 + y \ln 2y^2 - \int_1^2 \ln y dy = 3\ln 2 - \int_1^2 \ln y dy.\]
Последний интеграл вычисляем по частям. Полагаем: \(u = \ln y, \quad dv = dy\). Тогда \(du = dy/y, \quad v = y\), и \[\int_1^2 \ln y dy = y \ln y^2 - \int_1^2 \frac{1}{y} dy = 2\ln 2 - y_1^2 = 2\ln 2 - 1.\]
Значит, \(S = 3\ln 2 - (2\ln 2 - 1) = \ln 2 + 1 \approx 1,69.\)
Ответ: 1,69.

Пример решения задачи 7.
Найти площадь фигуры, ограниченной линиями:
\[x^2 + 2x + y^2 = 0, \quad x^2 + 4x + y^2 = 0, \quad x + y = 0, \quad x\sqrt{3} + y = 0.\]
Решение. Два первых уравнения легко преобразовать к виду: \((x+1)^2+y^2=1, \quad \sqrt{4} + y^2=4.\) Эти уравнения определяют окружности, причем первое – окружность радиуса R=1 с центром в точке \((-1,0)\), второе – окружность радиуса R=2 с центром в точке \((-2,0)\). Линии \(x + y = 0, \quad x\sqrt{3} + y = 0 - прямые,\)
проходящие через начало координат. Фигура изображена на рис. 2.21. Ее площадь находим по формуле (2.12). В интеграле перейдем к полярным координатам: \(x = r \cos \varphi, \ y = r \sin \varphi \). Окружность \(x^2 + 2x + y^2 = 0 \) имеет полярное уравнение:
\[
 r^2 \cos^2 \varphi + 2r \cos \varphi + r^2 \sin^2 \varphi = 0, \quad \text{откуда} \quad r = -2 \cos \varphi.
\]
Аналогично окружность \(x^2 + 4x + y^2 = 4 \) имеет полярное уравнение: \(r = -2 \cos \varphi \). Прямая \(x + y = 0 \) имеет полярное уравнение \(r \cos \varphi + r \sin \varphi = 0 \), откуда \(\tan \varphi = -1 \), т. е. \(\varphi = \frac{3\pi}{4} \).

Аналогично прямая \(x\sqrt{3} + y = 0 \) имеет полярное уравнение \(\varphi = 2\pi/3 \). Тогда

\[
 S = \iint_D \mathrm{d}r \mathrm{d}\varphi = \int_{-2\cos \varphi}^{3\pi/4} \int_{2\pi/3}^{3\pi/4} r^2 \mathrm{d}r \mathrm{d}\varphi = \frac{3\pi}{4} \int_{-2\cos \varphi}^{3\pi/4} \frac{3\pi}{4} \varphi \mathrm{d}\varphi = \frac{\pi}{4} \left(3 + \frac{3\sqrt{3}}{4} \right) \approx 0.58.
\]

Ответ: 0.58.

2.5.2. Масса плоской пластинки.
Если \(\mu = \mu(x, y) \) — поверхностная плотность плоской пластинки \(D \), то масса \(m \) этой пластинки определяется по формуле

\[
 m = \iint_D \mu(x, y) \mathrm{d}x \mathrm{d}y.
\]

Двойной интеграл (2.13) вычисляется путем сведения его к повторному интегралу. В том случае, когда \(D \) является частью круга или кольца, следует перейти к полярным координатам: \(x = r \cos \varphi, \ y = r \sin \varphi \). Если же пластинка есть часть области, ограниченной эллипсом \(x^2/a^2 + y^2/b^2 = 1 \) или является эллиптическим кольцом, то нужно переходить к обобщенным полярным координатам: \(x = ar \cos \varphi, \ y = br \sin \varphi \).

Примеры решения задачи 8.

Пример 8.1.

Пластинка \(D \) задана ограничивающими ее кривыми \(y^2 = 5x, \ x = 5, \ y = 0 \ (y \geq 0) \). Поверхностная плотность равна \(\mu = 2x + 3y^2 \). Найти массу пластинки.

Решение. Пластинка изображена на рис. 2.22. Массу пластинки находим по формуле (2.13). При переходе к повторному интегралу сначала интегрируем по \(y \), затем — по \(x \). Им также \(x \) изменяется от линии \(y = 0 \) до линии \(y = \sqrt{5x} \), переменная \(x \) — от 0 до 5. Поэтому масса

72
\[m = \int_0^5 \int_0^{\sqrt{5x}} (2x + 3y^2) dy = \int_0^5 (2xy + y^3) \bigg|_0^{\sqrt{5x}} = \]
\[= 7\sqrt{5} \int_0^5 x^{3/2} dx = 350. \]

Ответ: 350.

Пример 8.2.
Пластина задана ограничивающими ее кривыми: \(x^2+y^2=25, x^2+y^2=36, x=0, y=0\) \((x\geq 0, y\geq 0)\). Поверхностная плотность \(\mu=(x+4y)/(x^2+y^2)\). Найти массу пластины.

Решение. Изобразим пластинку на рисунке (рис. 2.23). Массу пластики находим по формуле (2.13) и в интеграле перейдем к полярным координатам: \(x = r \cos \phi, y = r \sin \phi\). Получим

\[m_D = \int_D \frac{x+4y}{x^2+y^2} dxdy = \int_0^{\pi/2} d\phi \int_0^6 \frac{r (\cos \phi + 4 \sin \phi)}{r^2} rdr = \]
\[= \int_0^{\pi/2} (\cos \phi + 4 \sin \phi) d\phi \int_0^6 dr = \int_0^{\pi/2} (\cos \phi + 4 \sin \phi) d\phi = 5. \]

Ответ: 5.

Пример решения задачи 9.
Пластина задана неравенствами: \(1 \leq x^2+y^2/4 \leq 4, y \geq 0, y \leq 2x\). Поверхностная плотность \(\mu = 5x^3 y\). Найти массу пластины.

Решение. Пластика ограничена линиями: \(x^2+y^2/4=1, x^2+y^2/4=4, y=0, y=2x\). Две первые линии - концентрические эллипсы, две последние - прямые. Система неравенств определяет область \(D\), изображенную на рис. 2.24. Массу пластики находим по формуле (2.13). В двойном интеграле перейдем к обобщенным полярным координатам: \(x = r \cos \phi, y = 2r \sin \phi\). Якобиан такого преобразования равен \(2r\). Находим уравнения линий, ограничивающих область \(D\), в обобщенных полярных координатах. Легко показать, что эллипсы будут иметь уравнения: \(r=1, r=2\), а прямые: \(\phi = 0, \phi = \pi/4\). Поэтому переменная \(r\) будет изменяться от 0 до 1, а переменная \(\phi\) – от 0 до \(\pi/4\). Получим

73
2.6. Приложения тройного интеграла

2.6.1. Объем тела. Объем тела G можно найти по формуле

$$V = \iiint_G dx
dy
dz.$$ (2.14)

Примеры решения задач 10.

Пример 10.1.

Найти объем тела, заданного ограничивающими его поверхностями:

$$y = x\sqrt{5}, \quad y = \sqrt{5}x, \quad z = 0, \quad x + z = 1.$$ Решение. Тело изображено на рис. 2.25. Спроецируем тело на плоскость Oxy, получим область D (см. рис. 2.26). Для вычисления объема тела воспользуемся формулой (2.14). При переходе от тройного интеграла к трехкратному сначала интегрируем по z, затем по y, наконец, по x. Из рис. 2.25 видим, что переменная z изменяется от 0 до $1 - x$. Пределы интегрирования по переменным y, x расставляем согласно рис. 2.26. Видим, что переменная y изменяется от $x\sqrt{5}$ до $\sqrt{5}x$. Найдем абсциссу точки B — точки пересечения линий $y = x\sqrt{5}$ и $y = \sqrt{5}x$. Решая систему уравнений:

$$y = x\sqrt{5}, \quad y = \sqrt{5}x$$ находим $x = 0$ и $x = 1$, откуда $x_B = 1$.

Значит, переменная x изменяется от 0 до 1. Получим

$$V = \iiint_G dx
dy
dz = \int_0^{\sqrt{5}} dx \int_0^{\sqrt{5}x} dy \int_0^{1-x} dz = \int_0^{\sqrt{5}} dx \int_0^{\sqrt{5}x} (1-x)dx \int_0^{1-x} dy =$$

$$= \int_0^1 (1-x)(\sqrt{5}x - x\sqrt{5})dx = \sqrt{5} \int_0^1 (\sqrt{5}x^2 - x + x^2)dx = \sqrt{5}\left(\frac{2}{3} - \frac{2}{5} - \frac{1}{2} + \frac{1}{3}\right) \approx 0,22.$$ Ответ: $0,22$.

74
Пример 10.2.
Найти объем тела, заданного ограничивающими его поверхностями:

\[x^2 + y^2 = 6, \quad y = \sqrt{x}, \quad y = 0, \quad z = 0, \quad z = 3x. \]

Решение. Тело изображено на рис. 2.27. Проекируем тело на плоскость Oxу, получим область D (см. рис. 2.28). Объем тела вычисляем по формуле (2.14). При переходе к трехкратному интегралу сначала интегрируем по z, затем по x, наконец, по y. Из рис. 2.27 видим, что z изменяется от 0 до 3x. Из рис. 2.28 видим, что x изменяется от линии \(y = \sqrt{x} \) до линии \(x^2+y^2=6 \). Выражая x из этих уравнений, находим пределы интегрирования по x. Они равны \(y^2 \) и \(\sqrt{6-y^2} \).

Чтобы найти пределы интегрирования по y, определим ординату точки B; для этого решим систему уравнений: \(y = \sqrt{x}, \quad x^2+y^2=6. \) Получим: \(x^2 + x = 6, \) откуда \(x_1=-3, \quad x_2=2. \) Значит, \(y_B = \sqrt{2}. \)

Таким образом,

\[
V = \int_{y} dy \int_{y} dx \int_{z=0}^{z=3x} dz = \int_{y} dy \int_{y} 3dx = \int_{y} dy \int_{y} \frac{3}{2} x \sqrt{6-y^2} dz = 3\sqrt{2} \int_{0}^{\sqrt{2}} (6-y^2-y^4) dy = \frac{3}{2} \sqrt{2} (6-\frac{2}{3} - \frac{4}{5}) \approx 9.62.
\]

Ответ: 9.62.

Примеры решения задачи 11.

Пример 11.1.
Найти объем тела, заданного ограничивающими его поверхностями: \(x^2+y^2=2x, \) \(z=0, \quad z=8/3-x. \)

Решение. Изобразим тело на рисунке (см. рис. 2.29). В проекции на плоскость Oxy получим круг с границей: \(x^2+y^2=2x. \) Объем тела находим по формуле (2.14).

В интеграле переходим к цилиндрическим координатам: \(x = r \cos \varphi, \quad y = r \sin \varphi, \quad z = z. \)

Окружность \(x^2+y^2=2x. \) имеет полярное уравнение \(r=2 \cos \varphi. \) Поэтому \(r \) изменяется от 0 до \(2 \cos \varphi, \) угол \(\varphi \) – от \(-\pi/2 \) до \(\pi/2. \) Получим

\[
V = \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{2 \cos \varphi} r dr \int_{0}^{\frac{8}{3} - r \cos \varphi} dz = \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{2 \cos \varphi} r \left(\frac{8}{3} - r \cos \varphi \right) dr =
\]

75
$$\frac{\pi}{2} \int d\phi \left(\frac{4}{3} r^2 - \frac{1}{3} r^3 \cos \phi \right)^{2 \cos \phi} \bigg|_0^{\frac{\pi}{2}} = \frac{16}{3} \int \cos^2 \phi d\phi - \frac{8}{3} \int \cos^4 \phi d\phi .$$

Находим

$$\frac{\pi}{2} \int \cos^2 \phi d\phi = \frac{1}{2} \left[(1 + \cos 2\phi) d\phi \right] = \frac{1}{2} \left[\frac{\pi}{2} \right],$$

$$\frac{\pi}{2} \int \cos^4 \phi d\phi = \frac{1}{4} \left[(1 + \cos 2\phi)^2 d\phi \right] = \frac{1}{4} \left[\frac{\pi}{2} \right].$$

(2.15)

(2.16)

Используя формулы (2.15),(2.16), получим окончательно $V = \frac{16 \pi}{3} - \frac{8 \pi}{3} \approx 5.24.$

Ответ: 5,24.

Пример 11.2.

Найти объём тела, заданного ограничивающими его поверхностями: $x^2 + y^2 = y$, $x^2 + y^2 = 2y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

Решение. Тело изображено на рис. 2.30. Объем тела находим по формуле (2.14). В тройном интеграле перейдем к цилиндрическим координатам: $x = r \cos \phi$, $y = r \sin \phi$, $z = z$. Из рис. 2.30 видим, что переменная z изменяется от 0 до r, так как на верхней гранич $z = \sqrt{x^2 + y^2} = r$. Проецируем тело на плоскость Oxy (см. рис. 2.31). Окружности $x^2 + y^2 = y$ и $x^2 + y^2 = 2y$ имеют полярные уравнения: $r = \sin \phi$ и $r = 2 \sin \phi$. Поэтому полярный радиус r изменяется в пределах от $\sin \phi$ до $2 \sin \phi$, а полярный угол – от 0 до π. Таким образом

$$V = \int \left[\frac{\pi}{2} \right] d\phi \int \left[\frac{\pi}{2} \right] drdz = \int \left[\frac{\pi}{2} \right] d\phi \int \left[\frac{\pi}{2} \right] r^2 dz = \int \left[\frac{\pi}{2} \right] d\phi \frac{1}{3} \left[\frac{2 \sin \phi}{\sin \phi} \right].$$

(2.16)
Находим \[\int_0^\pi \sin^3 \varphi d\varphi = -\int_0^\pi (1 - \cos^2 \varphi) d(\cos \varphi) = (-\cos \varphi + \frac{1}{3}\cos^3 \varphi) \bigg|_0^{\pi} = \frac{4}{3}. \]

Следовательно, \(V = (7/3)(4/3) \approx 3,11. \)
Ответ: 3,11.

Пример 11.3.
Найти объем тела, заданного ограничивающими его поверхностями:
\[z = x^2 + y^2 - 1, \quad x^2 + y^2 = 2y, \quad z = 0 \quad (z \geq 0). \]

Решение. Изобразим тело на рисунке (рис. 2.32). Объем тела находим по формуле (2.14). В тройном интеграле перейдем к цилиндрическим координатам: \(x = r \cos \varphi, \quad y = r \sin \varphi, \quad z = z \). Из рис. 2.32 видим, что переменная \(z \) изменяется от 0 до \(r^2-1 \), так как на верхней границе \(z = x^2 + y^2 - 1 = r^2 - 1 \).

Проектируем тело на плоскость \(Oxz \); проекция изображена на рис. 2.33. Границами проекции являются окружности \(x^2 + y^2 = 1 \) и \(x^2 + y^2 = 2y \), которые в полярных координатах имеют уравнения: \(r = 1 \) и \(r = 2 \sin \varphi \). Поэтому переменная \(r \) изменяется в пределах от 1 до 2\(\sin \varphi \). Чтобы отыскать пределы изменения \(\varphi \), нужно решить систему уравнений: \(r = 1, \quad r = 2 \sin \varphi \). Получим: \(2 \sin \varphi = 1, \quad \varphi_1 = \pi/6, \quad \varphi_2 = 5 \pi/6 \). Значит, \(\varphi \) изменяется от \(\pi/6 \) до \(5 \pi/6 \).

Таким образом
\[V = \int_0^{5 \pi/6} \int_1^{2 \sin \varphi} \int_0^{r^2-1} r dr dz d\varphi = \int_0^{5 \pi/6} \int_1^{2 \sin \varphi} r(r^2-1) dr d\varphi = \int_0^{5 \pi/6} \int_1^{2 \sin \varphi} \frac{5 \pi}{6} d\varphi = \int_0^{5 \pi/6} \frac{5 \pi}{6} d\varphi = \int_0^{5 \pi/6} \frac{6}{\pi} \left(\frac{1}{4} r^4 - \frac{1}{2} r^2\right) d\varphi = \int_0^{5 \pi/6} \left(4 \sin^4 \varphi - 2 \sin^2 \varphi + \frac{1}{4}\right) d\varphi. \]

Аналогично (2.15), (2.16) находим
\[\int_0^{5 \pi/6} \frac{6}{\pi} 2 \sin^2 \varphi d\varphi = \frac{\pi}{3} + \frac{\sqrt{3}}{4}, \quad \int_0^{5 \pi/6} \frac{6}{\pi} 4 \sin^4 \varphi d\varphi = \frac{1}{4} (\pi + \frac{7}{8} \sqrt{3}). \]

Следовательно, \(V = 4 \cdot \frac{1}{4} (\pi + \frac{7}{8} \sqrt{3}) - 2(\frac{\pi}{3} + \frac{\sqrt{3}}{4}) + \frac{1}{2} \frac{2 \pi}{4} \approx 2,22. \)
Ответ: 2,22.
Пример решения задачи 12.

Найти объем тела, заданного ограничивающими его поверхностями: \(y=x^2-1, \) \(y=3, \) \(z=3+\sqrt{2x^2+y^2}, \) \(z=6+\sqrt{2x^2+y^2}. \)

Решение. Тело изображено на рис. 2.34. Спрацируем тело на плоскость \(Oxy, \) в проекции получим область, ограниченную параболой \(y=x^2-1 \) и прямой \(y=3. \) Для отыскания объема тела воспользуемся формулой (2.14). Очевидно, переменная \(z \) изменяется от \(3+\sqrt{2x^2+y^2} \) до \(6+\sqrt{2x^2+y^2}, \) переменная \(y \) – от \(x^2-1 \) до \(3. \) Для отыскания пределов интегрирования по \(x \) нужно решить систему уравнений: \(y=x^2-1, y=3. \) Получим \(x^2-1=3 \) или \(x=\pm 2. \) Значит, \(x \) изменяется в пределах от \(-2 \) до \(2. \) Таким образом,
\[
V = \int_{-2}^{2} \int_{\frac{x^2-1}{\sqrt{2}}}^{3} \int_{\frac{3+\sqrt{2x^2+y^2}}{2}}^{2} (4-x^2) \, dx \, dy \, dz = 32.
\]
Ответ: 32.

Пример решения задачи 13.

Найти объем тела, заданного ограничивающими его поверхностями: \(z=\sqrt{2-x^2-y^2}, \) \(z=x^2+y^2. \)

Решение. Поверхность \(z=\sqrt{2-x^2-y^2} \) есть сфера радиуса \(R=\sqrt{2} \) с центром в начале координат, поверхность \(z=x^2+y^2 \) – параболоид вращения с вершиной в начале координат, осью вращения которого служит ось \(z. \) Тело изображено на рис. 2.35. Найдем линию пересечения поверхностей. Для этого решим совместно систему уравнений:
\[
z=\sqrt{2-x^2-y^2}, \quad z=x^2+y^2. \]
откуда \(z^2+z-2=0, \) \(z=1 \) (корень \(z=-2 \) – посторонний). Значит, линия пересечения лежит в плоскости \(z=1 \) и имеет уравнение \(x^2+y^2=1. \) Процентуем тело на плоскость \(Oxy, \) в проекции получим круг \(x^2+y^2 \leq 1 \) (см. рис. 2.35). Объем тела находим по формуле (2.14). В тройном интеграле переходим к цилиндрическим координатам: \(x=r\cos\phi, \) \(y=r\sin\phi, \) \(z=z. \) При этом учитем, что \(z \) изменяется от поверхности \(z=x^2+y^2 \) до поверхности \(z=\sqrt{2-x^2-y^2}, \) которые в цилиндрических координатах имеют уравнения: \(z=r^2 \) и \(z=\sqrt{2-r^2}. \) Получим

78
Пример решения задачи 14.
Найти объем тела, заданного ограничивающими его поверхностями: \(z = x^2 + y^2 + 1, \ z = 2y + 1 \).

Решение. Тело изображено на рисунке рис. 2.36. Спроецируем тело на плоскость \(Oxy \), проекцию обозначим через \(D \). Чтобы найти уравнение границы области \(D \), решаем систему уравнений:

\[
\begin{align*}
z &= x^2 + y^2 + 1, \\
z &= 2y + 1.
\end{align*}
\]

Получим

\[
x^2 + y^2 + 1 = 2y + 1, \quad \text{т. е.} \quad x^2 + y^2 = 2y.
\]

Это окружность радиуса \(R = 1 \) с центром в точке \((0,1)\). Значит, \(D \) - круг. Для вычисления объема тела воспользуемся формулой (2.14), при этом в интеграле перейдем к цилиндрическим координатам: \(x = r \cos \varphi, \ y = r \sin \varphi, \ z = z \).

Переменная \(z \) (см. рис. 2.36) изменяется от поверхности \(z = x^2 + y^2 + 1 \) до поверхности \(z = 2y + 1 \). Эти поверхности в цилиндрических координатах имеют уравнения \(z = r^2 + 1 \) и \(z = 2r \sin \varphi + 1 \), поэтому переменная \(z \) изменяется от \(r^2 + 1 \) до \(2r \sin \varphi + 1 \). Окружность \(x^2 + y^2 = 2y \), являющаяся границей областей \(D \), имеет в полярных координатах уравнение \(r = 2 \sin \varphi \), поэтому переменная \(r \) изменяется от 0 до \(2 \sin \varphi \).

Наконец, \(\varphi \) изменяется от 0 до \(\pi \).

Получим

\[
\begin{align*}
V &= \int_0^\pi d\varphi \int_{r^2 + 1}^{2 \sin \varphi + 1} rdr \int_0^{2 \sin \varphi} dz = \int_0^\pi d\varphi \int_{r^2 + 1}^{2 \sin \varphi + 1} r (2r \sin \varphi - r^2) dr = \\
&= \int_0^\pi d\varphi \left(\frac{2}{3} r^3 \sin \varphi - \frac{1}{4} r^4 \right)_{r^2 + 1}^{2 \sin \varphi + 1} = \frac{4}{3} \int_0^\pi \sin^4 \varphi d\varphi = \frac{4}{3} \int_0^\pi \frac{3\pi}{8} = \frac{\pi}{2} \approx 1,57.
\end{align*}
\]

При этом вычисление интеграла от \(\sin^4 \varphi \), равного \(3\pi/8 \), производится по аналогии с интегралом от \(\cos^4 \varphi \) (см., например, формулу (2.16)).

Ответ: 1,57.
Пример решения задачи 15.
Найти объем тела, заданного неравенствами:

\[1 \leq x^2 + y^2 + z^2 \leq 4, \quad 0 \leq z \leq \sqrt[3]{(x^2 + y^2)/3}, \quad y \leq x \sqrt[3]{3}, \quad y \leq x/\sqrt{3}. \]

Решение. Строим сечение тела координатными плоскостями \(Oxz \) и \(Oxy \). Начнем с сечения тела плоскостью \(Oxy \); для этого в неравенствах полагаем \(z=0 \).

Получим \(1 \leq x^2 + y^2 \leq 4, \quad y \leq x \sqrt[3]{3}, \quad y \leq x/\sqrt{3}. \)

Двойное неравенство задает кольцо с центром в начале координат, внутренним радиусом \(R_1=1 \), внешним радиусом \(R_2=2 \).

Неравенства \(y \leq x \sqrt[3]{3}, \quad y \leq x/\sqrt{3} \) определяют полуплоскости, ограниченные прямыми \(y=x \sqrt[3]{3} \) и \(y=x/\sqrt{3} \). Выделяем задаваемую неравенствами общую часть, получим сечение тела плоскостью \(Oxy \). На рис. 2.37 это сечение заштриховано. Строим сечение тела плоскостью \(Oxz \), для чего в исходных неравенствах полагаем \(x=0 \). Получим систему неравенств

\[1 \leq y^2 + z^2 \leq 4, \quad 0 \leq z \leq y/\sqrt[3]{3}, \quad y \leq 0. \]

Выделяем задаваемую неравенствами общую часть, получим сечение тела плоскостью \(Oxz \). На рис. 2.38 это сечение заштриховано. По сечениям восстанавливаем изображение тела (см. рис.2.39). Объем вычисляем по формуле (2.14). В интеграле переходим к сферическим координатам:

\[x = r \cos \varphi \cos \theta, \quad y = r \sin \varphi \cos \theta, \quad z = r \sin \theta. \]

Находим пределы интегрирования. Из рис. 2.37, 2.38 видим, что -2 \(\pi/3 \leq \varphi \leq \pi/6 \), \(0 \leq \theta \leq \pi/6 \), \(1 \leq r \leq 2 \). Получим

\[V = \int_0^{\pi/6} \int_0^{\pi/6} \int_{2\pi/3}^{\pi/3} \frac{d\varphi}{2\pi} \frac{d\theta}{\pi} \frac{r^2 \cos \theta dr}{3} = \frac{7}{3} \int_0^{\pi/6} \frac{d\varphi}{2\pi} \int_0^{\pi/3} \cos \theta d\theta = \]

\[= \frac{7}{3} \int_0^{\pi/6} \sin \theta d\varphi = \frac{7}{3} \frac{1}{2} \int_0^{\pi/3} d\varphi = \frac{7}{3} \left(\frac{\pi}{6} + \frac{2\pi}{3} \right) = \frac{35}{36} \pi \approx 3.05. \]

Ответ: 3.05.
2.6.2. Масса тела. Масса тела G, имеющего плотность $\mu(x,y,z)$ находится по формуле

$$m = \iiint_V \mu(x,y,z)\,dx\,dy\,dz.$$ \hspace{1cm} (2.17)

Примеры решения задачи 16.

Пример 16.1.

Тело задано ограничивающими его поверхностями: $x^2+y^2+z^2=9$, $x^2+y^2=1$ ($x^2+y^2\leq 1$), $y=0$ ($y\geq 0$). Плотность $\mu=4|z|/17$. Найти массу тела.

Решение. Изобразим тело на рисунке (см. рис. 2.40), спроектируем тело на плоскость Oxy, в проекции получим половину круга: $x^2+y^2\leq 1$, $y\geq 0$. (На рис. 2.40 проекция заштрихована.) Массу тела находим по формуле (2.17). Так как само тело и его плотность симметричны относительно плоскости Oxy, то можно вычислить массу только верхней половины тела, а потом полученный результат удвоить. В тройном интеграле перейдем к цилиндрическим координатам: $x=r\cos\varphi$, $y=r\sin\varphi$, $z=z$. В цилиндрических координатах уравнение верхней половины сферы будет иметь вид $z=\sqrt{9-r^2}$, поэтому z изменяется от 0 до $\sqrt{9-r^2}$, переменная r изменяется от 0 до 1, переменная φ – от 0 до π. Поэтому

$$m_G = 2\pi \left[\int_0^1 r\,dr \int_0^{\sqrt{9-r^2}} dz \int_0^\pi \phi \,d\varphi\right] = 2\pi \left[\int_0^1 r\,dr \int_0^{\sqrt{9-r^2}} 4\,dz \int_0^\pi 1\,d\varphi\right] r(9-r^2)\,dr = \pi.$$

Ответ: π.

Пример 16.2.

Тело задано ограничивающими его поверхностями: $x^2+y^2=z^2$, $x^2+y^2=z$, $x=0$, $y=0$ ($x\geq 0$, $y\geq 0$). Плотность $\mu=24z$. Найти массу тела.

Решение. Изобразим тело на рисунке (см. рис. 2.41). Найдем уравнение линии пересечения поверхностей: $x^2+y^2=z^2$, $x^2+y^2=z$, для этого решаем данную систему уравнений и получим $z^2=z$; откуда $z=1$, т.е. $x^2+y^2=1$. (Случай: $z=0$ дает единственную точку $x=y=z=0$.) Значит, линией пересечения поверхностей является окружность $x^2+y^2=1$, $z=1$, и в проекции тела на плоскость Oxy получается четверть круга (заархитованная на рис. 2.41) с границей $x^2+y^2=1$. Массу тела находим по формуле (2.17). В тройном интеграле перейдем к цилиндрическим координатам: $x=r\cos\varphi$, $y=r\sin\varphi$, $z=z$. Поверхность $x^2+y^2=z$ в цилиндрических координатах имеет уравнение $z=r^2$, поверхность $z=\sqrt{x^2+y^2}$ - уравнение $z=r$,

81
значит, z изменяется от r^2 до r. Переменная r изменяется от 0 до 1, переменная φ – от 0 до $\pi/2$. Поэтому

$$m = \int_0^{2\pi} d\varphi \int_0^r rdr \int_{r^2}^{24} zdz = 12 \int_0^{\pi/2} d\varphi \int_0^1 r(r^2 - r^4)dr = \int_0^{\pi/2} d\varphi = \pi/2.$$

Ответ: 1,57.
СПИСОК ЛИТЕРАТУРЫ

2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 1,2. – М. Высшая школа, 1980.
Учебное электронное издание

ВЕЛЬМИСОВ Петр Александрович
МАЦЕНКО Петр Константинович
ПОКЛАДОВА Юлия Валерьевна
САВИНОВ Николай Васильевич

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЯ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Учебное пособие

ЭИ № 760. Объем данных 4,05 Мб.

ЛР №020640 от 22.10.97.
Перечное издание
Технический редактор М.В. Теленкова
Подписано в печать 28.12.2015. Формат 60×84/16.
Усл. печ. л. 4,88. Тираж 100 экз. Заказ 3.

Ульяновская государственная технический университет,
432027, г. Ульяновск, ул. Сев. Венец, д. 32.
ИПК «Венец» УлГТУ, 432027, г. Ульяновск, ул. Сев. Венец, д. 32.
Тел.: (8422) 778-113
E-mail: venec@ulstu.ru
http://www.venec.ulstu.ru